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We consider the problem of classifying curves when they are observed only partially on
their parameter domains. We propose computational methods for (i) completion of partially
observed curves; (ii) assessment of completion variability through a nonparametric multiple
imputation procedure; (iii) development of nearest neighbor classifiers compatible with the
completion techniques. Our contributions are founded on exploiting the geometric notion
of shape of a curve, defined as those aspects of a curve that remain unchanged under
translations, rotations and reparameterizations. Explicit incorporation of shape information
into the computational methods plays the dual role of limiting the set of all possible
completions of a curve to those with similar shape while simultaneously enabling more
efficient use of training data in the classifier through shape-informed neighborhoods. Our
methods are then used for taxonomic classification of partially observed curves arising
from images of fossilized Bovidae teeth, obtained from a novel anthropological application
concerning paleoenvironmental reconstruction.
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1 INTRODUCTION

Modern functional and curve data come in all shapes and sizes (pun intended!). A particular type of
functional data that is starting to receive attention in recent years consists of univariate functions that
are only observed in sub-intervals of their interval domains. Names for such data objects abound:
censored functional data [1]; functional fragments [2,3]; functional snippets [4]; partially observed
functional data [5]. Similar work with multivariate functional data or parametric curves inRd(d≥ 2)
are conspicuous in their absence. The methodological focus of this paper, consequently, is twofold:
develop easily implementable computational algorithms for completion of partially observed planar
curves and assess completion variability; incorporate the completion procedure into a procedure to
classify partially observed curves. An equally important objective relates to taxonomic classification
of partial curves representing outlines of fossilized teeth of extant, southern African bovids (antelopes
and buffaloes) extracted from a novel anthropological imaging dataset.

The leitmotif of our approach lies in the explicit use of shapes of curves as a mechanism to not
only counter the ill-posed nature of the problem of “sensibly” imputing or completing the missing
piece of a partially observed curve, but also to use the metric geometry of the shape space of curves
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profitably when developing a suitable classifier. The rationale
behind using shapes of curves can be explained quite simply.
Fundamental to the routine task of comparing and identifying
objects by humans or a computer is an implicit understanding of
a set of symmetries or transformations pertaining to its shape:
those properties or features of the object that are unaffected by
nuisance information (e.g., orientation of the camera under
which the object is imaged). Such an understanding assumes
added importance when the object is only partially observed (e.g.,
identifying a chair hidden behind a table based on the backrest
only) since it eliminates the need to consider a substantially large
class of possible completions of the object. In the context of
partially observed curves, working with their shapes leads to
completions that are compatible with the shapes of fully observed
curves in a training dataset. Relatedly, from an operational
perspective, any formulation of completion of a missing piece
of a curve based on an endpoints-constrained curve, either
through deterministic or probabilistic model-based techniques,
suffers from having too many degrees-of-freedom. As a result, the
parameter space of missing pieces to search over needs to be
constrained to obtain meaningful curve completions; we propose
to impose such a shape-related constraint.

For example, in the anthropological application, any sensible
completion of a bovid tooth should assume the shape of a tooth.
We can constrain the parameter space comprising open curves,
with endpoints constrained to match that of the partially
observed curve, while determining a sensible completion based
on the requirement that the completion should be tooth-like.
Figure 1 shows an example of using shape information to
complete a bovid tooth using Algorithm 1 (Section 3) and
compares it to an arbitrary completion devoid of explicit
shape information.

An important consideration when considering shape of a
curve is its scale. Strictly speaking, scaling a curve does not
alter its shape, and it is hence a nuisance transformation.
However, in our motivating application from anthropology,
the size of bovid teeth is known to have important
taxonomical information and can hence potentially improve
discriminatory power in the classification problem [6]. We will
therefore accord due consideration to scale information when
comparing shapes of curves; in shape analysis vernacular, this is

referred to as size-and-shape analysis. For simplicity, we will
continue to chraracterize our approach as shape-informed.

Research in geometry-based statistical analysis of shapes of
arbitrarily parameterized planar curves is quite mature; see, for
example, [7,8] for foundational details and the R package fdasrvf
for computational tools. Leveraging this, our main contributions
are as follows.

1) We develop a gradient-based algorithm (Algorithm 1) for
shape-informed partial matching and completion with respect
to a complete template/donor curve.

2) In order to assess and visualize variability of completions from
Algorithm 1, given a training dataset of fully observed curves,
we propose an adaptation of the hot-deck imputation method
used on traditional Euclidean data to generate several
imputations or completions (Algorithm 2).

3) We propose two nearest neighbor classification procedures for
partially observed curves based on shape distances by utlizing
completions obtained from any of the above two algorithms.

1.1 Related Work
Partially observed curves arise as data in several applications. In
medical imaging, the appearance of anatomies in images of
various modalities is often summarized through the shapes of
their outlines. Partial curves arise due to (i) low resolution and
contrast of many medical imaging modalities (e.g., PET or CT);
(ii) a boundary of an organ being obscured by other organs or
hard to identify due to similar appearance of neighboring tissues
[9]. In handwriting analysis, a key task is the segmentation of
samples of handwriting (curves) into letters or syllables, followed
by imputation of incomplete curves [10]. Shapes of occluded
objects, such as tanks, are also routinely used in military
applications, where only part of the object’s boundary is
reliable and the rest must be imputed based on prior shape
knowledge [9].

There is a substantial literature on missing data and shape
analysis, however, most of the work is restricted to data obtained
as multivariate morphological measurements. For example, [11]
examines missing data in the morphology of crocodile skulls
based on linear morphometric measurements of the skulls, in

FIGURE 1 | Anthropological application with bovid teeth. Left: Image of a partial tooth with the segmentation overlaid in red.Middle; Right: Shape-informed and
arbitrary completions (blue) of the observed partial tooth (red), respectively.
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contrast to using landmarks or entire outlines (curves). Missing
data methods for landmark-based shape data have been
developed in [12, 13, 14, 15]. By defining landmarks on each
shape, the problem can be framed in a more traditional statistical
setting where each landmark can be thought of as a covariate and
more traditional missing data techniques, such as the EM
algorithm and multiple imputation, can be used. [16] look at
four different methods for dealing with missing landmark data:
Bayesian Principal Component Analysis (BPCA), least-squares
regression, thin-plate splines (TPS), and mean substitution.
Additional work on missing data can be found in [17], which
focuses on missing data in Procrustes analysis, and [18], which
considers occluded landmark data.

The work most closely related to this current study can be
found in [19], which studies the problem of matching a partially
observed shape to a full shape. [19] performs partial matching
using the Square-Root Velocity framework, and this is the
framework we use as well in the sequel. Our work in a certain
sense goes beyond their work and incorporates missing data
techniques into the completion procedure, and additionally is
tailored towards the classification task. [9] incorporates prior
shape information in Bayesian active contours that can be used to
estimate object boundaries in images when the class of the object
of interest is known; they demonstrate the usefulness of this
approach when the object boundary is partially obscured. [20]
considers the problem of identifying shapes in cluttered point
clouds. They formulate a Bayesian classification model that also
heavily relies on prior shape information. Finally, there is some
recent work on missing data techniques for functional data
analysis [21, 22, 23].

2 SHAPES OF PARAMETERIZED CURVES

Themain objects of interest in this work are parameterized curves
and their shapes. Defining a suitable distance metric to compare
their shapes is of fundamental importance in order to suitably
formalize the notion of a “best completion of a partial curve”.
From several available in the literature, we consider two distances
that are suitable for our needs. We provide a description of the
mathematical formulation for these two distances in the
following, and refer the interested reader to [24] for more
details. As discussed in the Introduction, the size of bovid
teeth contains potentially taxon (class)-distinguishing
information, and we hence consider the notion of size-and-
shape of a curve. Throughout, for ease of exposition, we
simply say shape to mean size-and-shape.

Denote by S1 the unit circle on the plane, and let β : S1 →R2

be an absolutely continuous, simple, parameterized closed curve
representing the full outline of a bovid tooth. We will identify S1

with the unit interval [0, 1] ⊂ R and enforce the endpoint
constraint β(0) � β(1) to represent a closed curve. Denote by
B the space of all such β. If β1 and β2 are assumed to be
parameterized according to arc-length, then ‖β1 − β2‖ �
[∫1

0
|β1(t) − β2(t)|2dt]1/2 is a viable distance between them,

where |·| is the standard Euclidean norm in R2. In order to
account for nuisance information that does not alter the shape of

β1 and β2, one must further remove variability due to translation
and rotation. The two variabilities are accounted for by defining
equivalence classes [β] � {Oβ + T|O ∈ SO(2), T ∈ R2}, where
SO(2) is the group of 2 × 2 rotation matrices, i.e., orthogonal
matrices with determinant equal to 1. Note that the L2 distance
between β1 and β2 is unchanged if both curves are translated and
rotated by the same T ∈ R2 or O ∈ SO(2). Thus to compare the
shapes of two curves β1 and β2 in B, we can use the non-elastic
shape distance

dNE β1, β2( ) � min
T∈R2 ,O∈SO(2)

‖β1 − Oβ2 + T( )‖. (1)

This optimization problem can be solved in a straightforward
fashion through Procrustes analysis [25]. The distance is termed
non-elastic as it requires one to fix curve parameterizations to
arc-length. Note that while dNE is defined on B, it is in fact a
distance on the shape space Sβ � {[β]: β ∈ B} of arc-length
parameterized closed curves consisting of equivalence classes
as points. This ensures that dNE (β1, β2) � 0 if there exists
(T,O) ∈ SO(2) × R2 such that β2 � Oβ1 + T; in other words,
the distance measured with dNE is zero for two curves having the
same shape.

If one desires to allow flexible parameterizations for shape
analysis, the L2 metric is no longer a feasible choice as it is not
invariant to re-parameterizations: ‖β1 − β2‖ ≠ ‖β1◦c − β2◦c‖,
where c: S1 → S1 belongs to the class Γ of orientation-preserving
diffeomorphisms of S1 that represent re-parameterizations of
curves in B. When S1 is identified with [0, 1], elements of the
group Γ can be viewed in the followingmanner. Consider the class
of {~c: R→R: ~c(t + 1) � ~c(t) + 1, continuous and increasing}.
Each function in the class is such that ~c(t) − t is periodic with
period 1. Moreover, each function of the class induces a re-
parameterization cs: S

1 → S1 with cs(e2πit) � e2πi~c(t), where ~c is
referred to as the lift of cs, which is then orientation-preserving.
Operationally, the construction implies that ~c can be expressed as
~c(t) � c(t) + c for some c : [0, 1] → [0, 1], which is a
diffeomorphism of [0, 1], except at t � 1, and c ∈ (0, 1]. We
thus construct a diffeomorphism of S1 by “unwrapping” S1 at
some point s, and generating such a c by identifying s with 0 (and
1). Henceforth, we will refer to such a c as an orientiation-
preserving reparameterization of S1, and carry out computations
with [0, 1] as the parameterization domain.

Since re-parameterization completely preserves the image of a
curve β, a distance based on a Riemannian metric that captures
infinitesimal bending and stretching can be used. Several families
of such metrics, termed as elastic have been considered [26, 27];
however, almost all of them are difficult to compute in practice
and require non-trivial approximations.

A solution to this key issue was proposed in [7]. Specifically, a
particular elastic metric is related to the usual L2 one when a
curve is transformed bijectively to its Square-Root Velocity
Function (SRVF): B ∋ β1Q(β) � : q � _β| _β|−1/2 ∈ L2, where _β
is the time-derivative. Under this transformation, ‖q1 − q2‖ � ‖(q1,
c) − (q2, c)‖, where (qi, c)d(qi◦c) �

_c
√

is the re-
parameterization action on the SRVF. Translations are
automatically removed by the use of the derivative. Let
Qo � {q: [0, 1]→R2 | q ∈ L2([0, 1],R2)} denote the linear
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space of SRVF-transformed open curves; the space of closed curve
SRVFs involves an additional closure condition:
Q � {q: [0, 1]→R2|q ∈ L2([0, 1],R2),∫1

0
q(t)|q(t)|dt � 0}. Thus,

Q, the space of closed curve SRVFs, is a subset ofQo, the space of
open curve SRVFs. We refer to [7, 24] for more details.

The corresponding elastic distance dE between two curves
β1, β2 ∈ B is defined using their SRVFs, wherein in addition to
rotations, re-parameterizations are also now optimized over:

dE β1, β2( ) � min
(O,c)∈SO(2)×Γ

‖q1 − O q2◦c( ) �
_c

√
‖, (2)

where the equivalence class [q] � {O(q◦c)
�
_c

√ |O ∈ SO(2), c ∈ Γ}
now represents an elastic shape, i.e., an equivalence of q under the
action of SO(2) and Γ, which can be applied in any order. The
optimization over SO(2) is solved via Procrustes analysis as before,
while the one over Γ is addressed using Dynamic Programming or
a gradient descent algorithm. This process is referred to as
registration: it provides an optimal, under the elastic metric,
correspondence between the shapes of q1 and q2. Details of
computing dE can be found in [24]. Correspondingly, define the
shape space of SRVF-transformed closed curves as Sq �
{[q]: q ∈ Q}.

In summary, if closed planar curves representing outlines of
bovid teeth are assumed to be arc-length parameterized, we can
use the non-elastic distance dNE on the shape space Sβ to compare
their shapes. On the other hand, if the curves are allowed to have
arbitrary parameterizations, it is more appropriate to consider
their SRVF transforms and the shape space Sq, equipped with the
elastic distance dE. Moreover, it is clear that the distances dNE and
dE are valid for open curves as well, i.e., in the case β (0) ≠ β (1).
We will use the distances for both open and closed curves without
qualification; context will disambiguate their usage.

3 PARTIAL SHAPE MATCHING AND
COMPLETION

We first focus on how a single partially observed curve can be
completed. Indeed, this requires a template or donor curve that is
fully observed, so that the partially observed one can be matched
and compared to different pieces of the fully observed one. Once a
match has been established, a completion can be subsequently
determined. In principle, the two tasks can be carried out
sequentially or in parallel; in this paper, we adopt the former
approach and leave the latter for future work.

Accordingly, the key tasks are to (i) match the observed partial
curve to a piece of the donor curve; (ii) impute or complete the
observed curve by finding the closest match to the residual piece
of the donor curve from a set of curves with fixed endpoints.
These are non-trivial tasks since the set of curves B (and Q) is
infinite-dimensional. The problem is made tractable by
considering equivalence classes of curves that share the same
shape and size, as defined earlier. Specifically, we propose to
leverage the shape distances dNE and dE in Eqs 1, 2, and develop
an optimization-based framework to carry-out completion/

imputation and classification sequentially. We first define
some important quantities.

• A curve β is viewed as being composed of two pieces βo and
βm, where the subscripts o and m identify the observed and
missing portions of β, such that
β(t) � βo(t)It∈[0,τ] + βm(t)It∈[τ,1], for some 0 < τ < 1. The
corresponding SRVF q similarly decomposes into (qo, qm)
for the same τ.

• β � βo+ βm denotes the concatenation of βo and βm, i.e., the
complete curve. Throughout, βo will denote a partially
observed curve, which conceptually is understood to be
the observed portion of a curve β; in similar fashion, βm will
throughout represent the missing piece of β.

• The restriction of a complete curve β to an open curve
defined by parameter values [s1, s2] ⊂ [0, 1] is denoted as
β(s1 ,s2), with its SRVF counterpart q(s1 ,s2) defined in a similar
manner.

• Denote the length of βo as L(βo) � ∫τ

0
| _βo(t)|dt, where _β is

the time-derivative. The length of the restricted curve is then
L(β(s1 ,s2)) � ∫s2

s1
| _β(s1 ,s2)(t)|dt. If we fix s1 ∈ [0, 1] and L, then

s2 ∈ [0, 1] is fully determined.

In line with our intention to use shape information of curves,
we note that completion of βowith respect to a donor curve βdonor
can be broken down into the following two steps.

(i) Determine the piece of βdonor that best matches the shape
of βo.

(ii) Determine an open βm curve that then best matches the
shape of the residual piece of the donor in (i); the required
completion is then βo + βm.

Two points are worth considering here. First, the optimal βm is
constrained to share the same endpoints as the determined piece
of βdonor. Second, by virtue of its definition, the completion βo +
βm exactly matches the partially observed curve βo when
restricted to a suitable subset of the parameter domain. The
latter is motivated by the quality of image data of bovid teeth,
under which it is reasonable to assume that the partially observed
curve is obtained under negligible measurement error.

The key consideration for developing an algorithm for the two
steps is the choice of an objective function that quantifies the
quality of matches, informed by either of the shape distances dNE
and dE in Eqs 1, 2, respectively. Repeated computation of the
elastic distance dE is computationally expensive (due to the
additional optimization over Γ), and hence time-consuming
inside an iterative algorithm (the potential donor set has large
sample size). Since our main objective in this paper is
classification of the partially observed curves, we use the more
convenient non-elastic distance dNE in order to carry out partial
matching and completion. However, we will employ the elastic
distance dE when designing a classifier in order to better access
pure shape features of curves that are potentially class-
distinguishing.
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We consider a two-step algorithm based on optimizing an
objective function over two parameter spaces: ΩP for the partial
match in step (i), and ΩC for the completion step (ii), defined as:

ΩPd[0, 1] × R2 × SO(2) × R+

and ΩCd β ∈ B|β(0) � βo(1), β(1) � βo(0){ } . (3)

The parameter set ΩP consists of shape-preserving
transformations for arc-length parameterized curves β and the
length of βo, whereas ΩC represents the subset of endpoint
constrained curves within B. In the partial matching step, a
piece on the donor βdonor of optimal length L* starting at s1*,
rotation O* and translation T* is determined resulting in β

(s*1,s*2)
donor .

The domains [s1, s2] of an arbitrary restriction β(s1 ,s2)donor and [0, τ] of
βo are always rescaled to [0, 1] to ensure that they have the same
domain. For a fixed s1, the optimal translation T* and rotation O*
are given explicitly via Procrustes analysis (see, for example, [28]).
The search for the optimal s*1 and L* can then be performed
exhaustively on [0, 1].

Note that β
(s*2 ,s*1)
donor refers to the residual piece on βdonor once

β
(s*1 ,s*2)
donor is removed owing to the circular ordering on the parameter

domain S1 of βdonor. The main challenge lies in carrying out
step 3 of the algorithm in which the missing data βm is
determined by searching over ΩC ⊂ B for the optimal curve
that best matches the residual piece β(s

*
2 ,s

*
1) of β from the

partial matching step. The challenge relates to the fact that ΩC

is a nonlinear subset of B.
We propose to optimize over ΩC with a gradient-descent

algorithm. First, rescale [s*2, s*1] to [0, 1]. Then, consider
an orthonormal basis {bi: [0,1]→R2, i� 1,2, ...} with bi (0) � 0
and bi (1) � 0, which enforce the endpoints constraint on the curve.
In particular, we use amodification of the Fourier basis for each of the

two coordinate functions, given by {sin(2πjt)�
2

√
πj

, cos(2πjt)−1�
2

√
πj

,j� 1,2, ...}1.
Let E(βm) � ‖(O*β(s

*
2 ,s

*
1) +T*)−βm‖2. Then, the gradient of E (βm)

at a current estimate βcurrm can be approximated using directional
derivatives along basis directions bi as

∇E∝ ∑∞
i�1

〈βcurrm − O*β s*2 ,s
*
1( ) + T*( ), bi〉bi,

where 〈·, ·〉 is the usual L2 inner-product on B. A single gradient
update in the completion algorithm is then given by

βnewm � βcurrm − ϵ∇E,

where ϵ > 0 is a small step size. This is repeated until convergence.
In practice, we reduce the dimension of the problem by
truncating the basis at a finite number N; this additionally
ensures that the optimal completion β*m is relatively smooth.
Two preliminary results from this two-step algorithm for bovid
teeth are shown in Figure 2. The black curve is the donor βdonor,
the red curve is βo, and the optimal completion β*m, after a set
number of iterations, is in blue.

4 ASSESSING VARIABILITY IN
COMPLETION THROUGH MULTIPLE
IMPUTATION
Algorithm 1 describes how a partially observed curve βo can be
completed given a donor curve βdonor. The completion is
deterministic and uncertainty estimates are unavailable.
Further, the application of this procedure is only possible
when a training dataset consisting of several curves is
available. An attractive way to examine completion variability
is to consider a multiple imputation framework for missing data.
There are numerous multiple imputation methods to handle
missing data in traditional multivariate settings; see [29, 30]
for a broad overview and details on missing data techniques.
Our choice is a nonparametric hot-deck multiple imputation
procedure. We describe this technique in a regression setting with
response y ∈ Rn and n × p design matrix X, where each case j � 1,
. . . , n is defined as the response-predictor pair (yj, xj).

(i) Replace a missing value ymiss of y with randomly selected
observed values in y, chosen from a donor pool of fixed size
K < n comprising fully observed cases that are“similar” to
the incomplete case.

(ii) Repeat step (i) M times to create M completed datasets.
(iii) Analyze theM completed datasets independently (e.g., mean

estimation) and combine results using Rubin’s combining
rules [29].

As a first step towards carrying out this program for partially
observed curves, we propose an adaptation of the hot-deck
imputation procedure for a classification task. However, the
development of methods to combine classification results
across M datasets, similar to Rubin’s rules, is an interesting
research problem in its own right, and we leave that for future
work (Section 7). Once steps (i) and (ii) are completed, it is
possible to visualize variability associated with completion using
Algorithm 1 by plotting the completions. Moreover, variability in
classification results can also be computed as a function of a
donor set of size K and number of completed datasets M.
Algorithm 2 outlines our adapted hot-deck imputation
procedure for generating M completions of a partially
observed curve βo given a training dataset D � {β1, . . . , βn}
consisting of n fully observed curves from B. The main

Algorithm 1: Partial match and completion.

1In practice, the basis is truncated to some finite number. We have found that
between 40 and 80 total basis elements per coordinate function are sufficient,
although this depends on the geometric complexity of the observed curves. In the
application considered in Section 6, we used 80 basis elements.
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change to the classic hot-deck imputation procedure described
above lies in how “similarity” between cases (here curves) is
assessed in (i). In particular, steps 3–8 in Algorithm 2 are used
to compute the (shape) similarity between a partially observed
curve and each curve in the training dataset D. Then, the rest of
(i) is carried out in step 9. Finally, (ii) is carried out in steps
10–13.

Note that once s*1 and s
*
2 are rescaled to 0 and 1, respectively, in

line 5, the optimal partial match of βi to βo then corresponds to
the piece β(0,1)i of length L* from βi, which is now represented as
an open curve β(0,1)i : [0, 1]→R2; the parameter domain [0, 1] of
β(0,1)i is not to be confused with the parameter [0, 1], representing
S1, of the fully observed curve βi. Similar comments apply to their
corresponding SRVF versions. Note and contrast step 7 of
Algorithm 2 to the completion step 3 in Algorithm 1: here,

the distance δi is computed between βo and the matched piece of
the donor, and not the residual piece.

The key feature of Algorithm 2 is the use of the elastic
distance, albeit not exactly in the form defined in (2) since an
optimal rotation O* ∈ SO(2) has already been determined in line
5–we hence refer to this distance as partial elastic distance. The
rationale for this is as follows. Once a piece of the donor βi of
length L* corresponding to parameter values s*1 and s*2 has been

extracted, the lengths of β
(s*1,s*2)
i and βo can be quite different.

Thus, computing the non-elastic distance between the two open
curves under the assumption of arc-length parameterization in
order to compare their shapes might not be appropriate. In
contrast, in Algorithm 1, the distances themselves were not of
chief interest. Our approach hence is to assume at this stage that
β
(s*1 ,s*2)
i and βo are arbitrarily parameterized and hence use the

partial elastic distance dE to compare their shapes using their
corresponding SRVFs; this also explains why we ignore using the
optimal translation T* resulting from Algorithm 1. To see that δi
in line 8 of Algorithm 2 is indeed the partial shape distance, note
that when a particular rotation O* is fixed, from line 6

inf
c∈Γ,O∈SO(2)

‖q0 − O* q(0,1)i ◦c( ) �
_c

√
‖ � inf

c∈Γ
‖q0 − O* q(0,1)i ◦c( ) �

_c
√

‖

� ‖qo − O* q(0,1)i ◦c*( ) ��
_c*

√
‖.

Figure 3 provides an illustration of the hot-deck imputation
procedure with M � 10 and K � 10 for two partially observed
bovid teeth using Algorithm 2; see Section 6 for details on the
bovid dataset.

FIGURE 2 | Two examples of shape imputation via Algorithm 1. The panels show the evolution of the completion (blue) at a few iterations of step 3, the observed
partial curve (red) and the donor (black).

Algorithm 2: Hot-deck imputation.
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5 NEAREST NEIGHBOR CLASSIFICATION

Consider a training datasetDtraind{(yi, βi)}ni�1 consisting of fully
observed curves βi ∈ B and corresponding class labels yi ∈ {1, . . . ,
G}. The goal is to classify a partially observed curve βo to one of
the G classes using training data Dtrain.

A distance-based classification procedure is a natural choice,
compatible with how completion and imputation is achieved.
Accordingly, we consider the kn-nearest neighbor classification
technique. A neighborhood of a curve in B can be defined with
respect to both non-elastic and elastic shape distances dNE and dE.
Effectively, although fully observed curves inDtrain assume values
in B, the classification procedure will be defined on their shapes
assuming values in the shape space Sβ (or Sq under the SRVF
transform).

The advantage of using the shape space lies in the fact that Sβ

is made up of equivalence classes of B under the equivalence
relation characterized by shape-preserving transformations. For a
fixed radius r, neighborhoods as balls of radius r around a fixed
point β* constructed on B using shape distances dNE are
necessarily larger than corresponding ones on B using the
usual L2 distance, since, by virtue of its definition, for every
r > 0,

β ∈ B : ‖β − β*‖≤ r{ }4 β ∈ B: dNE β, β*( )≤ r{ }.
In a kn-nearest neighbor setting, the radius r is distance, say

rkn, of the k
th
n closest curve to β*, and changes with the training

data. However, rkn computed using the distance dNE will be
smaller than one computed using the L2 distance; thus one is
able to find kn neighbors at a smaller distance from β*. This leads
to better performance of the classifier for large sample size n and
improves rates of convergence of the predicted class probabilities
(see, for example, [31]). Similar comments apply to the elastic
distance dE, albeit under subtler conditions since it is induced by
the elastic Riemannian metric on B, which is not directly related
to the L2 metric on B.

We will use the elastic distance dE again to accommodate for
the possibility that curves inDtrain and βo+ βm can have arbitrary
parameterizations following completion of βo with any βm. Let
N kn(βo+βm)d{βi1, . . . , βikn} ⊂ Dtrain be kn nearest curves to a
particular completion βo + βm of βo in the training data. We
consider two nearest neighbor classifiers.

• knn classifier: Assign βo to the class with largest predicted
probability. The predicted probability that label y for βo
assumes value g ∈ {1, . . . , G} is given by

π y � g|βo,Dtrain( ) � 1
kn

∑
βi∈N kn βo+βm( )

I yi�g{ },

and βo + βm is one completion obtained from Algorithm 1
with βm ∈ ΩC.

• knn-imp classifier: Here, we incorporate uncertainty in
completion of βo into the classification procedure by
combining the knn classifier with hot-deck imputation.
Specifically, with M completions βo + β l

m, l � 1, . . . ,M
obtained from Algorithm 2, the corresponding class
probability is

π y � g|βo,Dtrain( ) � 1
knM

∑M
l�1

∑
βi∈N kn βo+βlm( )

I yi�g{ }.

The class probability is thus obtained by averaging over all
completions obtained by sampling M donor curves with
replacement from the donor set Bdonor in Algorithm 2.

The knn-imp classifier is a novel extension of the knn classifier
to accommodate variability in completions through the hot-deck
multiple imputation procedure. However, at the outset, it is not
clear if it will generally outperform the knn classifier, since
performance will heavily depend on quality of the completion
step in Algorithm 1 and shape variability in the training dataset.

FIGURE 3 | Examples of partial matches followed by imputation on partially observed teeth. Left: Approximately 50% of the tooth is observed. Right:
Approximately 80% of the tooth is observed. The black curve denotes the fully observed portion of the tooth with each red curve being a single completion of the tooth. In
both examples shown here M � 10 and K � 10.
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6 TRIBE AND SPECIES CLASSIFICATION
OF BOVID TEETH

We examine performance of Algorithm 1 and Algorithm 2 with
respect to classification of images of fully and partially observed bovid
teeth using the two nearest neighbor methods under two settings.

(i) A simulated setting, where curves pertaining to partially
observed teeth are created from fully observed ones with
known class labels.

(ii) A real data setting comprising “true” partially observed teeth
with unknown class labels.

There are numerous measures of classification performance.
We use the log-loss measure to asses performance: let np denote
the number of partially observed curves β1o, . . . , β

np
o to be classified

in G classes {1, . . . , G} with unknown class labels y1, . . . , ynp and
let Dtrain denote the training dataset of fully observed curves.
Then

Log − lossd − 1
np

∑np
i�1

∑G
g�1

I yi�g{ } log π yi � g|βio,Dtrain( )[ ],
where the class probability is defined as earlier depending on
whether the knn or knn-imp classifier is used. Evidently, a low
Log-loss is indicative of good classification. Note that the Log-loss
is positive with no upper bound. The Log-loss can be used only
when the class labels are known. In the real data setting with
unknown labels, the Log-loss is not used; instead, classification
accuracy is assessed relative to classification done by an expert
(co-author JKB).

All computations are performed using routines available in the
R [32] package fdasrvf [33] on a 16-node Intel Xeon-based
computational cluster in the Computer Science Department at
Loyola University Chicago. Full code for the analyses can be
found on Github [34].

Our motivating application stems from anthropology, where
fossil bovid teeth associated with our human ancestors are used to
reconstruct past environments. Bovids are useful because they are
ecologically sensitive to their environment and typically dominate
the South African faunal assemblages [35, 36, 37, 38].

The tooth images for our study were obtained from four
institutions in South Africa: National Museum, Bloemfontein;
Ditsong Museum, Pretoria; and Amathole Museum, King
William’s Town. Images were also taken at the Field Museum,
Chicago, United States. The complete methodology as to how the
teeth images were collected is outlined in [6]. Briefly, the occlusal
surface of each of the three molars from the upper and lower
dentitions for each extant bovid specimen were photographed
separately. The specimen and the camera were levelled using a
bubble level. A scale was placed next to the occlusal surface for
every image.

Specifically, we consider images of teeth from 7 bovid tribes
(Alcelaphini, Antilopini, Bovini, Hippotragini, Neotragini,
Reduncini, and Tragelaphini) and 20 species (R. arundinum,
A. buselaphus, S. caffer, R. campestris, P. capreolus, D. dorcas,
K. ellipsiprymnus, H. equinus, R. fulvorufula, O. gazella, C. gnou,

K. leche, A. marsupialis,H. niger,O. oreotragus, T. oryx,O. ourebi,
T. scriptus, T. strepsiceros, C. taurinus). The dataset contains six
tooth types: lower (i.e., mandibular) molars 1, 2 and 3 (LM1, LM2,
LM3), and upper (i.e., maxillary) molars 1, 2 and 3 (UM1, UM2,
UM3). Specific counts of the sample sizes of each tooth type and
tribe are in Table 1. This dataset contains fully observed teeth of
known taxa and will constitute the training data Dtrain.

Each tribe has unique dental characteristics that are shared by
its members. Further, the complexity of the occlusal surface
outline varies across the tribes. As such, considering shape for
tribe classification is a natural endeavor in this application.
Generally, classification at the species level is more difficult
since the variability of shapes of occlusal surface outlines
across species within the same tribe is not as large.

6.1 Simulated Setting
In this setting, a partially observed tooth was created from a fully
observed one with known class label in Dtrain, and a class
probability is calculated using both nearest neighbor methods;
the procedure is repeated for each tooth inDtrain and the Log-loss
is computed for the knn and knn-imp classifiers for choices:

(i) K � 5, 10, 20 of size of donor set Bdonor;
(ii) M � 5, 10, 20 of number of imputations based on sampling

with replacement from Bdonor;
(iii) kn � 1, 2, . . . , 20 of number of neighbors;
(iv) Tooth types LM1, LM2, LM3, UM1, UM2 and UM3;
(v) Side of tooth extracted, where Left is denoted as 1 and

Right as 2.

A partially observed tooth was created in the following
manner. The raw representation of each tooth in Dtrain

comprised of 60 points around the occlusal surface of the
tooth that were obtained from the program MLmetrics [6, 39].
For each tooth, the 60 points were split into two sets roughly
divided by a line connecting the mesostyle to the entostyle in
maxillary teeth and metastylid to the ectostylid in mandibular
teeth. This type of cut was chosen as this break point is commonly
observed in fossilized bovid teeth. Figure 4 provides an
illustrative example of the procedure.

6.1.1 Tribe classification
Figure 5 shows Log-loss curves associated with the knn-imp
classifier as a function of kn (number of neighbors) for the
above-mentioned choices of M and K, and also the
corresponding curve for the knn classifier. In all cases, for
smaller values of the number of nearest neighbors chosen, the
knn-imp classifier outperforms the knn classifier. As the number of
nearest neighbors increases, not performing imputation performs
as well or better than imputation in most cases. In fact, for some
teeth there are certain combinations of M and K that are better in
terms of Log-loss for imputation regardless of the choice kn of
nearest neighbors.

6.1.2 Species classification
Figure 6 shows Log-loss curves for species classification and
paints a fairly similar picture to Figure 5: when the number of
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nearest neighbors is chosen to be small (i.e., fewer than 5), there is
always at least one imputation setting that has lower Log-loss
than no imputation. However, in all cases as the number of
nearest neighbors chosen gets close to 20, no imputation
performs better in terms of Log-loss than doing imputation.

6.2 Real Data Setting
A small set np � 7 of real, partially observed fossil bovid teeth from
the site of Gladysvale, South Africa, extracted from images, with
unknown class labels were used. We use the image numbers to
label them: IMG4825, IMG4980, IMG4983, IMG4990, IMG5139,
IMG9973 and IMG5514. Training data Dtrain is the same as the
one used in the simulated setting. Recall that in the simulation
setting, partially observed teeth had roughly half of the number of
sampled points as the fully observed ones. In the real data setting,
this is not the case: in four partially observed teeth (IMG4825,
IMG4980, IMG4983, IMG9973), more than half of the tooth is
observed; in one (IMG4990) less than half of the tooth is
observed; and, in the remaining two (IMG5139, IMG5514),
approximately half of the tooth is observed. This impacts the
number of points chosen to represent (and parametrize) the open,
partially observed curves. Since we cannot know the length of the

missing piece for real partially observed curves, numbers of points
to sample along the curves were determined based on expert
advice from co-author JKB.

For both knn-imp and knn classifiers, we set the number of
neighbors kn � 10; for the knn-imp classifier we used K � 10 and
M � 10. These choices were based on performances in the
simulated setting.

6.2.1 Classification at Tribe Level
Table 2 shows predicted class probabilities associated with the
knn classifier. Each row has an entry in bold indicating the “true”
(according to an expert) class of these teeth. We observe that the
classifications without imputation are highly accurate for the 7
teeth. One can see that 6 out of 7 of these teeth are classified to the
correct tribe. In addition, the probability of belonging to the
correct tribe in the 6 correctly classified teeth was 1. However, in
the one case where the classification is wrong, the predicted
probability was 0.

Table 3 shows similar results for the knn-imp classifier. The
same 6 teeth that were correctly classified before are again
correctly classified, however, with probabilities that are all
lower than 1. Again, the tooth that was incorrectly classified
previously is again incorrectly classified and the probability
predicted of belonging to the correct class is again 0. Notably,
the partially observed tooth from IMG9973 was difficult to
classify when using either classifier; interestingly, in both cases
it was classified with high probability to the Neotragini class.

6.2.2 Classification at the Species Level
Table 4 shows predicted class probabilities associated with the
knn classifier. We saw in Tables 2, 3 that each of the 5 teeth from
the Alcelaphini tribe was correctly classified, with probability at
least 0.5. However, at the species level, only 2 of these 5 teeth
(IMG4983, IMG4990) have high probability associated with the
correct species; the three other teeth (IMG4825, IMG4980 and
IMG5139) have a probability of belonging to the correct species of
0.4. In addition, for the two remaining teeth that belong to the
Tragelaphini and Antilopini tribes, the predicted probability for
the correct species was 0.1 and 0, respectively.

When classifying using the knn-imp classifier with
imputation, the results are similar with a few notable
differences. Table 5 shows these results. First, of the 5
Alcelaphini teeth, 3 are correctly classified using imputation
(IMG4825, IMG4990 and IMG5139). Second, two of these are
in fact correctly classified with higher probability when carrying
out imputation with the knn-imp classifier when compared to the
knn classifier (IMG4825: 0.44 vs. 0.4 and IMG5129: 0.52 vs. 0.4).

TABLE 1 | Sample sizes for each tooth type and tribe.

Alcelaphini Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini Total

LM1 106 27 22 26 45 76 53 355
LM2 117 30 25 37 55 90 53 407
LM3 117 30 19 34 53 96 62 411
UM1 117 30 23 37 43 80 75 405
UM2 118 30 23 41 53 97 94 456
UM3 71 30 17 58 52 110 78 416

FIGURE 4 | An example of how a partially observed tooth is obtained
from a fully observed one in the simulated setting. The figure shows a lower
molar 1 (LM1) from the tribe Alcelaphini with red points representing the
extracted piece from the Left (1) side and blue points do the same for the
Right (2) side.
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Finally, the other four teeth corresponding to IMG4980,
IMG4983, IMG9973 and IMG5514 had predicted probabilities
for the correct species of 0.04, 0.22, 0 and 0.09, respectively.

7 DISCUSSION

We have presented a computational approach for classifying
partially observed curves. In particular, we presented two
algorithms to complete and classify partially observed planar
curves and simultaneously assess variability involved with the
completion through a multiple imputation procedure. To our
knowledge, this is the first work in literature to explicitly use the
notion of shapes of parameterized curves in addressing the
problem considered from the missing data perspective;
coarsening the parameter space of suitable open curves,
from which the partially observed curves are completed,
through the notion of shape equivalence results in sensible
completions. Moreover, shape-based distances used to define
classifiers deliver satisfactory classification performance. The

results from application of the algorithms to the dataset of
images of bovid teeth are quite promising and are deserving of
further, extensive, investigation involving several different
classifiers.

Through the application of the proposed framework on real
data, we have found that hot-deck imputation can sometimes
deteriorate classification performance; there is an intuitive
explanation for these findings. Classification performance is
greatly affected by the “amount of information” contained in
the observed partial curve. By “amount of information”, we
specifically mean the ability to discriminate between different
classes. In particular, if the observed partial curve contains a lot of
information about its class membership compared to the missing
portion, then imputation injects additional variability into the
problem, which has a negative effect on classification
performance. On the other hand, if the observed partial curve
is not easily distinguishable across the different classes in the
training data, then the variability coming from the imputation
procedure provides valuable information, thus improving
classification performance. Knowledge about information

FIGURE 5 | Tribe classification in simulated setting. Log-loss for the knn-imp classifier as a function of number kn neighbors for different values of donor set size K
and number of imputations M; purple “No-imp” curve represents the same for the knn classifier.
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content in an observed partial curve for classification can be
obtained either from a training dataset consisting of fully
observed curves with class labels or from a subject matter
expert. In such cases, a Bayesian classification model with a
judicious choice of prior on class-specific templates can be
developed; such an approach will extend the one recently
proposed for univariate functional data [23] to the curve
setting, and constitutes ongoing work.

As with any methodological development that represents a first
foray into tackling a challenging problem, our approach suffers from
a few shortcomings, which inevitably present many possible avenues
for future research.Algorithm 1 can be improved. Ideally, the partial
match and completion steps are carried out jointly. Moreover,
assuming curves to be arc-length parameterized, while
convenient, can sometimes be unrealistic in practice, especially
when data curves are extracted as part of an elaborate pre-

FIGURE6 | Species classification in simulated setting. Log-loss for the knn-imp classifier as a function of number kn neighbors for different values of donor set sizeK
and number of imputations M; purple “No-imp” curve represents the same for the knn classifier.

TABLE 2 | Real data. Tribe level predicted class probabilities from the knn classifier with kn � 10. Emboldened values indicate the “true” class as obtained from an expert.

Alcelaphini Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini

IMG4825 1.00 0.00 0.00 0.00 0.00 0.00 0.00
IMG4980 1.00 0.00 0.00 0.00 0.00 0.00 0.00
IMG4983 1.00 0.00 0.00 0.00 0.00 0.00 0.00
IMG4990 1.00 0.00 0.00 0.00 0.00 0.00 0.00
IMG5139 1.00 0.00 0.00 0.00 0.00 0.00 0.00
IMG9973 0.00 0.00 0.00 0.00 1.00 0.00 0.00
IMG5514 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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TABLE 3 |Real data. Tribe level predicted class probabilities from the knn-imp classifier with kn �K �M � 10. Emboldened values indicate the “true” class as obtained from an
expert.

Alcelaphini Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini

IMG4825 0.96 0.00 0.00 0.00 0.00 0.00 0.04
IMG4980 0.57 0.36 0.00 0.00 0.07 0.00 0.00
IMG4983 0.98 0.00 0.00 0.00 0.02 0.00 0.00
IMG4990 0.56 0.15 0.00 0.06 0.00 0.20 0.03
IMG5139 1.00 0.00 0.00 0.00 0.00 0.00 0.00
IMG9973 0.00 0.00 0.00 0.00 0.97 0.00 0.03
IMG5514 0.02 0.00 0.00 0.00 0.00 0.00 0.98

TABLE 4 | Real data. Species level predicted class probabilities with knn classifier with kn � 10. Emboldened values indicate the “true” class as obtained from an expert.

IMG4825 IMG4980 IMG4983 IMG4990 IMG5139 IMG9973 IMG5514

R. arundinum 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A. buselaphus 0.10 0.00 0.10 0.00 0.20 0.00 0.00
S. caffer 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R. campestris 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P. capreolus 0.00 0.00 0.00 0.00 0.00 0.10 0.00
D. dorcas 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K. ellipsiprymnus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H. equinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R. fulvorufula 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O. gazella 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C. gnou 0.40 0.40 0.80 0.70 0.40 0.00 0.00
K. leche 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A. marsupialis 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H. niger 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O. oreotragus 0.00 0.00 0.00 0.00 0.00 0.70 0.00
T. oryx 0.00 0.00 0.00 0.00 0.00 0.00 0.10
O. ourebi 0.00 0.00 0.00 0.00 0.00 0.20 0.00
T. scriptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T. strepsiceros 0.00 0.00 0.00 0.00 0.00 0.00 0.90
C. taurinus 0.50 0.60 0.10 0.30 0.40 0.00 0.00

TABLE 5 | Real data. Species-level predicted class probabilities with knn-imp classifier with kn �K �M � 10. Emboldened values indicate the “true” class as obtained from an
expert.

IMG4825 IMG4980 IMG4983 IMG4990 IMG5139 IMG9973 IMG5514

R. arundinum 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A. buselaphus 0.20 0.25 0.23 0.03 0.15 0.00 0.00
S. caffer 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R. campestris 0.00 0.00 0.00 0.00 0.00 0.58 0.00
P. capreolus 0.00 0.07 0.02 0.00 0.00 0.00 0.00
D. dorcas 0.01 0.23 0.44 0.03 0.12 0.00 0.00
K. ellipsiprymnus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H. equinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R. fulvorufula 0.00 0.00 0.00 0.20 0.00 0.00 0.00
O. gazella 0.00 0.00 0.00 0.06 0.00 0.00 0.00
C. gnou 0.44 0.04 0.22 0.35 0.52 0.00 0.00
K. leche 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A. marsupialis 0.00 0.36 0.00 0.15 0.00 0.00 0.00
H. niger 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O. oreotragus 0.00 0.00 0.00 0.00 0.00 0.27 0.00
T. oryx 0.00 0.00 0.00 0.00 0.00 0.00 0.09
O. ourebi 0.00 0.00 0.00 0.00 0.00 0.12 0.00
T. scriptus 0.00 0.00 0.00 0.01 0.00 0.03 0.00
T. strepsiceros 0.04 0.00 0.00 0.02 0.00 0.00 0.89
C. taurinus 0.31 0.05 0.09 0.15 0.21 0.00 0.02
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processing procedure. This points towards developing a version of
Algorithm1 based on the corresponding SRVFs qo and qm; themain
challenge here is how to handle the interplay between points {s*1, s*2}
and their images {c(s*1), c(s*2)} under arbitrary reparameterizations.

In the current work, an explicit statistical model to handle the
several sources of variation (e.g., measurement error in extracting
curves from images) that can profoundly affect both completion
and classification is conspicuous in its absence; without such a
model, it is difficult to quantify uncertainty about the completions,
which quite naturally percolates down to the classification task. An
attractive model-based approach is to not just estimate the missing
piece of the partially observed curve, but instead estimate an entire
template that has a portion that is very similar in shape to the
partially observed curve. Such an approach has recently been used
for traditional univariate functional data under a Bayesian
formulation [23] and appears promising.

Our primary task in this paper is classification. However, it is
unclear how one can use the proposed algorithms if interest was in
computing statistical summaries in the presence of partially observed
curves, such as the mean shape or PCA on the space of shapes. For
example, output of Algorithm 2 is a set of M closed curves
βo+β l

m, l � 1, . . . ,M with the property that each βo+βlm exactly
matches βo on a subset of the parameter domain; it is not clear how
theM completions can be combined (e.g., a Karcher mean of closed
curves) to construct a representative summary completion. This is
related to how estimates from imputations can be combined with a
handle on within and across sample variabilities using formal rules
(e.g., Rubin’s rules). Development of such general rules in the present
setting is far from straightforward.

More generally, while the hot-deck imputation procedure
worked reasonably well when combined with the completion
task, there is a pressing need to systematically develop missing
data concepts and imputationmethods to better address the special
structure of missingness in the context of shapes of curves. The
following challenges naturally arise: (i) Is the notion of Missing
Completely at Random (MCAR), so profitably used in traditional
settings, ever a reasonable assumption for shapes of curves? It is
almost impossible to disentangle measurement error from reasons

for why a piece of a curve is missing. (ii) Conditional probability
measures associated with random functions when conditioned on
its values in a sub-domain are notoriously difficult, and rarely exist.
Given this, how does one adapt, or perhaps circumvent, the
traditional notion of sampling from the conditional distribution
of the missing values conditioned on the observed values to the
present setting? Much remains to be done in this direction.
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