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This article presents a novel method, based on functional data analysis, to

analyse measurements of structural parameters of polymers and polymer

composites. The method is demonstrated using newly developed biodegradable

conducting polymer composites prepared via a solution casting technique. The

measurements of the macro- and microstructural parameters that are used in the

characterization of these films are obtained using X-ray diffraction, an

impedance analyser and a UV–vis spectrometer. A functional representation

of the measured values of the parameters at different dopant concentrations is

adopted by viewing them as realizations of a continuous-time stochastic process

observed with measurement error. This allows one to estimate the mean

functional relationship between a parameter and the dopant concentration. A

functional version of principal component analysis is performed, by which the

major modes of variation are discovered and the correlations of parameter

values at different concentrations are estimated. This provides insight into local

and global features of the relationship between these parameters. Some

comments are made on how the parameters vary as a function of dopant

concentration.

1. Introduction

Characterization of polymer composites that are conducting

and biodegradable using micro- and macrostructural para-

meters is an important task in view of the broad applicability

of such composites. For instance, a conducting polymer can be

used as a cathode material in lithium ion batteries, gas sensors,

biosensors (Ates et al., 2012), thin-film transistors (Halls et al.,

1995) and supercapacitors. However, reliable statistical

analysis of data obtained from measurements of these para-

meters is hindered by issues of small sample size and

measurement error (Ida & Izumi, 2011; Ida, 2011). The

overarching objective in such analyses is the accurate esti-

mation of the behaviour of the structural parameters as a

function of the dopant concentration. A typical example

would be that of the measurement of a parameter across

different dopant concentrations for a single preparation or

sample; when this is repeated for different samples, the

resulting data can be viewed as independent realizations, one

for each prepared sample, of the true unknown function

representing the relationship between the parameter and the

concentration. In other words, the statistical unit is now a

functional observation, as opposed to a scalar or a vector,

representing values of the parameters collected over an

ordered axis (concentration). To this end, in this article, we use

techniques from functional data analysis (FDA), which is
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becoming an increasingly important area of research within

statistics. The framework is based on representing data

collected over an ordered variable, such as time, or in this

article dopant concentration, as discretely observed trajec-

tories or functions. Such a representation leads to a coherent

framework for estimating the true functional relationship

between a parameter and dopant concentration by allowing us

to borrow strength from within and across preparations or

samples.

In this article, we describe the development of a new

conducting polymer composite, which is biodegradable, and

conduct a statistical study of the experimental parameters

using techniques from FDA. Specifically, we use hydroxy-

propyl methyl cellulose (HPMC) and the metal inorganic salt

nickel chloride (NiCl2) hexahydrate to prepare polymer

membranes by doping with NiCl2 at various concentrations.

These membranes are subjected to different analytical

measurements, with the objective of investigating their

physico-mechanical properties. We characterize the structural

properties of the films using structural parameters obtained

via measurements from X-ray diffraction, an impedance

analyser, a tensile strength measuring unit and a UV–visible

spectrometer. Owing to measurement errors, intrinsic prop-

erties of the chosen sample and potential defects introduced

during the growth of the material, the data corresponding to

analytical measurement of the parameters do not, generally,

exhibit a linear trend with respect to the dopant concentration;

indeed, there is no apparent reason to assume so.

In view of the issues mentioned above, our objective in this

article is threefold:

(1) for each sample, predict the functional relationship

between the parameter of interest and the dopant concen-

tration, and consequently estimate the average or mean

function across the samples;

(2) using the mean function for each parameter, estimate

the dependence of its values across dopant concentration;

(3) investigate the functional relationships between para-

meters as a function of dopant concentration.

The outlined objective involves global and local properties

of the underlying functional relationship between a structural

parameter and the dopant concentration. The global aspect is

captured in the mean function, while the local information

needs to be extracted from the individual samples; this

involves exploring different modes of variation of the func-

tional relationship through a basis expansion. Therefore we

perform a functional version of principal component analysis

(FPCA), commonly used in multivariate statistics, to obtain a

basis representation of the functional relation between the

parameter and dopant concentration in each sample in terms

of an orthonormal basis of eigenfunctions. From this, based on

the data across dopant concentrations from different samples,

we first estimate the average or mean functional relationship;

using the estimated mean function, we then estimate the

correlation structure amongst the parameter values for

different concentration levels. This provides an insight into

structural components of the polymer corresponding to

changes in the dopant concentrations. Armed with the mean

function for each parameter, we then look into their rela-

tionships and uncover some interesting properties.

2. Theory and methodology

We review briefly the theoretical aspects of FDA and FPCA

relevant for our work. We refer the interested reader to an

excellent introduction to FDA in the book by Ramsay &

Silverman (2005), and to Yao et al. (2005) for the version of

FPCA used in this article.

2.1. Functional data

Statistical analysis is based on assuming that data from

measurements are realizations of random variables. A

collection of random variables over an index set, usually

infinite, is referred to as a stochastic process. Functional data

consist of a collection of random functions which are viewed as

independent and identical realizations of an underlying

stochastic process. In our setting, if � is the structural para-

meter of interest, and t represents the dopant concentration

level measured in percentage, we view f�ðtÞ; t 2 R�0g as a

stochastic process, in order to model the uncertainty and

variability arising from measurements of � at different t. Then

for one sample, data from N measurements of � at concen-

tration levels t1; . . . ; tN can be represented as �ðt1Þ; �ðt2Þ; . . . ;
�ðtNÞ. The key observation is that the set ½�ðt1Þ; �ðt2Þ; . . . ; �ðtNÞ�

cannot be viewed as a vector since there is a natural ordering

of the set T arising from the assumed values of t; in other

words, in contrast to multivariate data, irrespective of

dimension, no meaningful topology on the domain exists. This

is illustrated by the fact that one can re-order the components

of a multivariate data vector and arrive at exactly the same

statistical analysis as for the data vector arranged in the

original order; this is certainly not true for functional data.

Indeed, there is no requirement for each sample to contain the

same number of measurements. For n preparations or samples,

if each sample i contains measurements of � at concentrations

t1; . . . ; tni
, the data can be represented as an n� ni array with

entries f�iðtjÞ : i ¼ 1; . . . ; n; j ¼ 1; . . . ; nig.

At this point, two issues arise. (1) If � has been observed

with a high sampling rate with large ni, then the mean function

can be estimated with point-wise estimates. Unfortunately, this

is typically not the case, and the measurements of � are sparse

and irregular: each sample i can contain measurements at

different concentration levels, and the number of measure-

ments in each sample is usually low. (2) The current repre-

sentation does not take into account measurement or

experimental errors. There are several approaches to address

these issues; for a detailed account, see Ramsay & Silverman

(2005). Our approach is based on the representation of the

stochastic process �ðtÞ in terms of the eigenfunctions of a

suitable operator.

2.2. Representation and FPCA

The stochastic process f�ðtÞ : t 2 R�0g is an infinite-dimen-

sional object; for tractable computations the goal here is to
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summarize �ðtÞ through a finite number of coefficients of a

suitable expansion known as functional principal component

scores (FPC). The reason for this approach, as described

earlier, is first to predict individual sample trajectories �iðtÞ for

all t 2 R�0 along with experimental errors through the defi-

nition of a formal model, and second to estimate the corre-

lation between values of � at different t. The two tasks are

related through the estimation of the mean or average func-

tion, which captures the global behaviour across all samples.

To this end, we model �ðtÞ as a square-integrable stochastic

process with mean function �ðtÞ ¼ E½�ðtÞ� and covariance

function Gðs; tÞ ¼ Cov½�ðsÞ; �ðtÞ�, where the expectation and

variance operators are Eð�Þ and Vð�Þ, and CovðX;YÞ is the

covariance between random variables X and Y. Analogously

to the expansion of a continuous function in terms of Fourier

harmonics, an appropriate expansion of �ðtÞ will be adopted in

terms of the eigenfunctions of the autocovariance operator

(Yao et al., 2005):

ðAfÞðtÞ ¼
R

R�0

f ðsÞGðs; tÞ ds; ð1Þ

that is, if ’k; k ¼ 1; 2; . . . are the eigenfunctions of the auto-

covariance operator, with associated eigenvalues

�1 � �2 � . . . , then

A’k ¼ �k’k: ð2Þ

We adopt the following model for �ðtÞ based on the

Karhunen–Lóeve expansion of a square-integrable stochastic

process:

�ðtÞ ¼ �ðtÞ þ
P1

k¼1

Ak’kðtÞ; ð3Þ

where Ak are uncorrelated random variables, which are the

FPC, and �ðtÞ is the deterministic mean function. They satisfy

EðAkÞ ¼ 0;VðAkÞ<1 and have the explicit representation

Ak ¼
R

R�0

½�ðtÞ � �ðtÞ�’kðtÞ dt: ð4Þ

The main advantage in employing the eigenbasis of the auto-

covariance operator, as opposed to other bases, lies in the fact

that the random coefficients Ak are uncorrelated, facilitating

computational implementation. This is not necessarily true for

other basis representations, and since the eigenfunctions are

obtained from the autocovariance operator, we are implicitly

able to capture the dependence structure of the functions

across and within samples.

In order to estimate �̂�ðtÞ of �ðtÞ from the data, we need to

move from the continuous representation of �ðtÞ to the

discrete version involving data f�iðtjÞ : i ¼ 1; . . . ; n;
j ¼ 1; . . . ; nig and we need to incorporate experimental error;

we denote

�ij ¼ �iðtjÞ þ "ij ¼ �ðtijÞ þ
P1

k¼1

Aik’kðtijÞ þ "ij; ð5Þ

where "ij are independent and identically random variables

with Eð"ijÞ ¼ 0 and Vð"ijÞ<1. From the representations in

equations (3) and (5), we observe that �ð�Þ is the deterministic

component and the sum is the stochastic component. This

provides the following interpretation of observed � as a

function of t: what one observes upon measurement is a

additive combination of the average behaviour of the para-

meter with respect to t and the unobserved experimental

error, which itself is a function of t. This is a very general setup

wherein the amount of experimental error is not assumed to

be uniform and can vary depending on the dopant concen-

tration. The advantage of such representations is that �̂�ðtÞ and

the correlation surface can be computed by borrowing

strength across samples and between the observations of � at

different concentration levels; this is particularly so in our

setting since the measurements are usually sparse and irre-

gular.

2.3. Estimates of mean function and correlation surface

The mean function is estimated by first pooling together all

available measurements f�ij; tijg for i ¼ 1; . . . ; n and

j ¼ 1; . . . ; ni. Noting that this implies a borrowing of infor-

mation from within and across samples or preparations, we can

use a smooth interpolation mechanism to estimate �ðtÞ. We

use the smoothing spline estimate �̂�ðtÞ which is the unique

solution to the optimization problem

argminf2F

Pn

i¼1

Pni

j¼1

½�ij � f ðtijÞ�
2
þ �

R

R�0

½ f
00

ðtÞ�2 dt; ð6Þ

where F is the class of square-integrable functions with at

least two derivatives. This is reasonable based on the initial

assumption of �ðtÞ satisfying square integrability, and it can be

shown that as the number of measurements increases without

bound �̂�ðtÞ converges, in an appropriate sense, to �ðtÞ.
Recall first that correlation between two random variables

is a dimensionless quantity, bounded between �1 and 1,

defined as the covariance between two random variables

scaled by their respective standard deviations. The correlation

function between �ðsÞ and �ðtÞ for s 6¼ t can be represented as a

parametrized surface � : R�0 � R�0 ! ½�1; 1�. We wish to

estimate this surface using �ij. The covariance surface is esti-

mated by taking pair-wise products

½�ij � �̂�ðtijÞ�½�ik � �̂�ðtikÞ�; j 6¼ k; ð7Þ

from which the estimate of the correlation surface �̂� is

obtained. Once the estimate of the covariance has been

obtained, estimates of the eigenfunctions [’̂’kðtÞ], functional

principal scores (ÂAk) and eigenvalues (�̂�k) are computed,

leading to the required prediction of �iðtÞ, the predicted

behaviour of � as a function of t for the ith sample:

�̂�iðtÞ ¼ �̂�ðtÞ þ
PK

k¼1

ÂAik’̂’kðtÞ; ð8Þ

where the infinite sum has been truncated to an appropriate

finite constant K. The procedures to estimate the FPC,

eigenfunctions and eigenvalues are technically involved; for

ease of exposition and brevity, we refer the interested reader

to Yao et al. (2005) for details.
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3. Experimental setup and measurements

We detail the polymer preparation and methods of measure-

ment of the parameters; we then apply the methods described

in the preceding section to the data obtained and investigate

local and global properties of the relationship between a

structural parameter and dopant concentration levels.

3.1. Preparation of polymer composites

Polymer composites were prepared by employing the

regular solution casting method. The HPMC used in this study

was procured by Loba Chemie, India, and NiCl2 from Merck,

India. A stock solution of 5% HPMC was prepared and doped

with NiCl2 of the required weight percentage to prepare 1, 2, 3

and 4% NiCl2–HPMC polymer composites. Each solution was

stirred thoroughly for over an hour, then poured onto casting

plates and allowed to cast for a week. The dried polymer

membranes were subsequently peeled off, and care was taken

to avoid any mechanical distortions; these films were stored in

zip-lock covers to avoid interaction with other contaminants

and moisture. Polymer composites prepared in this fashion

were found to be flexible and hygroscopic in nature for higher

concentrations. The films were dried using a hot-air oven to

remove the residual water molecules.

3.2. Microstructural changes observed with X-ray diffraction

Powder X-ray diffraction was recorded for our samples

using a Rigaku MiniFlex II desktop X-ray diffractometer to

identify the microstructural changes that occurred in the

polymer matrix as a result of doping, and these changes were

evaluated using the whole powder pattern fitting (WPPF)

method (Scardi & Leoni, 2006; Balzar et al., 2004; Koker et al.,

2014; Zilahi et al., 2015). Measurements were recorded at an

output of 30 kV and 15 mA of Cu K� radiation for a scanning

angle between 6 and 60�, with a speed of 5� min�1 and a step

size of 0.02�. The X-ray diffraction patterns obtained from the

samples are shown in Fig. 1. The intensity data were corrected

for instrumental broadening (Stokes, 1948) and Lorentz

polarization factors as described in our earlier papers

(Somashekar & Somashekarappa, 1997; Somashekarappa et

al., 2002). We consider the single-order method reported by

Somashekar et al. (1989) and Hall & Somashekar (1991) to

describe the microstructural information of these polymer

composites. The efficiency of this single-order method has

been confirmed by a recent round robin test. Thus, here we

follow the same method and consider single order to explain

the broadening of profiles to understand the microstructure

(Hall & Somashekar, 1991; Langford et al., 2000; Shahmoradi

et al., 2010).

Microstructural parameters such as crystal size N and lattice

strain g (in %) are usually determined by employing the

Fourier method of Warren & Averbach (1952). The intensity

of a profile in the direction joining the origin to the centre of

the reflection can be expanded in terms of a Fourier cosine

series:

AðnÞ ¼
Ps¼s0=2

s¼�s0=2

IðsÞ cos 2�ndðs� s0Þ; ð9Þ

where the coefficients of the harmonics AðnÞ are functions of

the size of the crystallite and disorder of the lattice. Here, s is

sinð�Þ��1, s0 is the value of s at the peak of the reflection, n is

the harmonic number and d is the lattice spacing. The Fourier

coefficients are computed as

AðnÞ ¼ AsðnÞ 	 AdðnÞ; ð10Þ

where 	 is the convolution operator. For various harmonic

numbers, an analytical expression for the size distribution

yields an expression for crystallite size distribution as

AsðnÞ ¼ Að0Þ
exp½��ðn� pÞ�

�N
; ð11Þ

and for lattice strain, the expression is

AdðnÞ ¼ expð�2�2n2mg2
Þ: ð12Þ

Here the term N represents the number of unit cells partici-

pating in the Bragg reflection process, g is the lattice strain, � is

the width of the distribution function and p is the smallest

number of unit cells in a column; m is the order of reflection,

which can be computed using the multidimensional mini-

mization SIMPLEX program 2 (Press et al., 1988). The

experimental profile is matched with a simulated profile using

the above parameters until a good fit is observed. The good-

ness of the fit is determined by computing

�2
¼
½Ical � ðIexp þ BGÞ�2

ðnptÞ
; ð13Þ

where BG is the background. We have fitted the whole

experimental pattern obtained by the model once in order to

evaluate the microstructural parameters. There appears to be

agreement within 1% of the mean value.
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Figure 1
X-ray diffraction profiles obtained for the polymer composites.



3.3. Absorbance investigated through UV–vis spectroscopy

UV–visible absorbance spectra of the samples, indicating

macrostructural aspects of the polymer composites, were

measured using a Labtronics LT-2800 double beam UV–

visible spectrometer to verify the characteristic absorption of

the polymer composites with respect to dopant concentration

for a wavelength range from 190 to 700 nm. Using this

absorption spectrum, the optical band gap was derived, for

comparison with the conductivity results. This evaluation of

optical band gap was done by employing a Tauc plot.

3.4. AC conductivity measurements

Measurements of AC conductivity were carried out to

report the changes in the conducting ability of these samples

due to doping. This test was carried out using a Hioki LCR Hi-

Tester at room temperature for the frequency range of 50 Hz

to 5 MHz. We obtain the conductance of the sample from the

instrument, which is then evaluated to get the conductivity for

the same respective frequencies using the equation

� ¼
G 	 	

A
; ð14Þ

where � is the conductivity, G is the obtained transconduc-

tance, 	 is the thickness and A is the area of the sample.

3.5. Mechanical properties

The tensile strength, percentage elongation at break and

other mechanical properties of the polymer composites were

examined using a Universal Testing Machine, Zwick Z-2.5,

ROELL, Germany. These properties are considerably affected

by the addition of NiCl2. The experiments were carried out

adopting ASTM standards and for multiple trails. The tensile

strength results are reported in Table 1.

4. Results from FDA and discussion

We report, in detail, the results and plots obtained for the

microstructural parameter crystalline area; for the other

parameters, we note that identical methods were used and

hence present only relevant results. Computations were

performed using the FPCA package (written in MATLAB;

The MathWorks Inc., Natick, MA, USA) available at http://

www.stat.ucdavis.edu/PACE/.

4.1. Crystallite size

From the X-ray diffraction plots shown in Fig. 1, it is evident

that the addition of NiCl2 to the polymer matrix makes the

polymer composites more amorphous, i.e. the narrow amor-

phous polymer halo becomes broader and almost vanishes.

This is because NiCl2 becomes interstitial in the polymer

network and damages the parent polymer structure. The

crystallite size values evaluated using the WPPF method

support these results.

We observe from Fig. 2(a) that crystallite area typically

decreases with increasing dopant concentration. The mean

function has been estimated by solving the optimization

problem given in equation (6) by combining measurements

across samples. Fig. 2(b) shows a scree plot, which plots the

percentage of variance in the measurement values of crystal-

lite area (as a function of dopant concentration) that can be

explained by the varying number of eigenfunctions used in the

expansion. The plot suggests that only two principal compo-

nents or eigenfunctions of the autocovariance operator are

needed; this is shown in Fig. 2(c), which is a plot of the two

estimated eigenfunctions. From this we can infer that, since

approximately 93% of the variation is expressed in the first

two eigenfunctions, the functional relationship between crys-

tallite area and dopant concentration is mostly linear.

From Fig. 3(a), we get some insight into the dependency

between crystallite areas at different dopant concentrations;

note that this information is unavailable by just observing the

mean function. For example, from the correlation plot we note

that crystallite areas at 1 and 2.5% are strongly negatively

correlated with a correlation close to �1. This informs us that

high (low) values of crystallite area at 1% would imply that its

area at 2.5% will be low (high). Such information will be

particularly helpful in several applications wherein the

polymer composites can be profitably used. Fig. 3(b) displays
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Table 1
Microstructural parameters evaluated using WPPF and the other physical
parameters evaluated from various other techniques.

Samples

Crystal-
lite area
(Å2)

%
Lattice
strain

Conductivity
at 1 kHz
(S cm�1)

Conductivity
at 10 kHz
(S cm�1)

Optical
band
gap
(eV)

Tensile
strength
(MPa)

Pure HPMC 12.87 0.005 4.92 � 10�11 1.59 � 10�10 3.56 60.13
12.84 0.005 1.35 � 10�10 1.26 � 10�9 3.55 61.70
14.9 0.005 1.30 � 10�10 1.24 � 10�9 3.54 58.30
14.9 0.005 7.23 � 10�11 3.08 � 10�10 3.56 59.92
13.10 0.005 5.83 � 10�11 6.22 � 10�10 3.54 63.25
14.9 0.005 1.40 � 10�10 1.15 � 10�9 3.57 62.05

1% NiCl2–
HPMC

14.10 0.01 8.39 � 10�6 9.44 � 10�6 3.02 24.05
14.9 0.01 8.04 � 10�6 9.32 � 10�6 3.00 23.79
10.9 0.01 7.73 � 10�6 9.06 � 10�6 3.01 24.32
13.46 0.01 7.41 � 10�6 8.81 � 10�6 3.01 23.47
14.60 0.01 6.17 � 10�6 7.88 � 10�6 3.03 22.93
14.41 0.01 5.75 � 10�6 7.58 � 10�6 3.02 25.17

2% NiCl2–
HPMC

14.27 0.01 5.69 � 10�5 6.46 � 10�5 2.82 25.32
14.47 0.01 5.88 � 10�5 6.61 � 10�5 2.81 24.73
15.32 0.01 5.37 � 10�5 6.31 � 10�5 2.80 25.41
14.41 0.01 4.55 � 10�5 5.63 � 10�5 2.82 25.01
15.07 0.01 4.50 � 10�5 5.63 � 10�5 2.81 24.32
15.25 0.01 4.21 � 10�5 5.42 � 10�5 2.82 24.71

3% NiCl2–
HPMC

9.24 0.005 1.27 � 10�5 2.66 � 10�5 2.66 18.48
9.7 0.005 1.89 � 10�5 3.47 � 10�5 2.65 18.08
11.8 0.005 1.88 � 10�5 3.46 � 10�5 2.67 19.00
10.34 0.005 1.86 � 10�5 3.38 � 10�5 2.66 18.50
10.51 0.005 1.85 � 10�5 3.36 � 10�5 2.64 18.02
10.00 0.005 1.27 � 10�5 2.66 � 10�5 2.65 18.40

4% NiCl2–
HPMC

9.81 0.005 5.79 � 10�5 1.83 � 10�4 2.56 11.85
10.03 0.005 6.51 � 10�5 1.92 � 10�4 2.57 11.87
10.12 0.005 6.77 � 10�5 1.92 � 10�4 2.56 11.83
9.81 0.005 6.97 � 10�5 1.92 � 10�4 2.58 11.81
9.54 0.005 7.06 � 10�5 1.91 � 10�4 2.56 11.89
9.76 0.005 4.43 � 10�5 1.51 � 10�4 2.58 11.84



the predicted functional relationship between crystallite area

and dopant concentrations for each sample, based on the

observed sparse data obtained from measurements. The

predicted trajectories, which are mostly linear, further corro-

borate the fact that only two eigenfunctions explain most of

the variability of the samples.

Recall that in order to predict the functions for each sample

from the expression in equation (8), in addition to the mean

function and eigenfunctions, the principal scores are required;

in this case since k ¼ 1; 2, corresponding to two eigenfunc-

tions, we estimate Ai1 and Ai2 for each sample with trials

i ¼ 1; . . . ; 6. These estimates are reported in Table 2. For

example, the predicted function of crystallite area for sample 1

at a dopant concentration of 2.7% would be computed using

equation (8) as

�̂�1ð2:7Þ ¼ �̂�ð2:7Þ þ 0:4417’̂’1ð2:7Þ � 0:0102’̂’2ð2:7Þ; ð15Þ

where �̂�ð2:7Þ and ’ið2:7Þ for i ¼ 1; 2 are the estimated mean

and eigenfunctions at 2.7% concentration, plotted in Figs. 2(a)
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Figure 3
(a) Estimated correlation surface plot of crystallite area. (b) Predicted
functions for each of the six samples across a fine grid of dopant
concentration.

Figure 2
(a) Estimated mean function using smoothing splines on pooled data
across six samples. (b) Scree plot depicting the number of eigenfunctions
against % of variation explained. (c) Two estimated eigenfunctions
displaying modes of variation.



and 2(c). This is the clear advantage in being able to predict

functions from discrete measurements at only a few dopant

concentrations – we are able to explore the parameter’s

behaviour even in the region of unobserved concentrations.

A comparison of the mean functions at the observed dopant

concentrations by FPCA and point-wise methods is shown in

Fig. 4. The discrepancy at 3% concentration is striking; the

FPCA mean is constrained by the smoothness conditions

imposed in the penalty term in the optimization problem in

equation (6), and hence discontinuities are discouraged.

4.2. UV–visible spectra

The UV–visible absorption spectroscopy carried out for

these samples showed that the absorbance of these composites

has increased with the concentration of NiCl2 doping. Such an

increase in absorbance indicates that there is a variation in the

band gap of the material, and thus we have derived the optical

band gap for these samples using the Tauc plot method by

considering indirect transitions and deriving absorption coef-

ficients (Urs et al., 2014). This plot of (�h
Þ1=2 against h
 is

shown in Fig. 5. The optical band gap has decreased with the

dopant concentration, which in turn increases the conductivity

of these samples. The conductivity results obtained are in

accordance with these results and show an increase in

conductivity of the samples. The obtained optical band gap

values are given in Table 1.

4.2.1. Optical band gap. The optical band gap values are

derived from the six individual measurements of UV–vis

absorbance recorded for each sample (Figs. 6 and 7). Fig. 6(a)

shows the average values of these band gaps, which decrease

with concentration. These polymer composites exhibit a linear

increase in absorbance of UV–vis wavelength with concen-

tration, as a result of excitation of molecules. This indicates

that the NiCl2 dopant decreases the band gap of the polymer

composites, making them more semi-conductive. The nickel

ions are embedded in a polymer matrix of dielectric constant �
and hence act as several Bohr atoms in the dielectric medium,

which results in different energy levels for free electrons in Ni.

This enhances the interaction with the polymer network,

thereby reducing the optical band gap with increasing

concentration.

4.3. Conductivity

It is noteworthy that the addition of NiCl2 to the HPMC

polymer has increased the conductivity of the samples by up to

several orders (six), and this indicates that the metal ions in

the network actively participate in electrical conduction. This

is feasible and supported by the amorphous nature of the

polymer, which increases with the dopant concentration. That

is, at the higher concentrations of NiCl2, both the number of

free metal ions and the amorphousness of the network make

the polymer more conductive. Thus NiCl2 proves to be a good

metal ion dopant for a polymer that is to be tailored as

conductive. The conductivity results as a function of concen-

trations at 1 and 10 kHz are presented in this section.

Fig. 8 shows the averaged variation of the conductivity of

the polymer composites at 1 kHz with concentration. It is seen

that the conductivity of these samples increases with the

increase in concentration. The free metal ions contribute to

the ionic conductivity of the matrix, which is supported by the
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Figure 4
The point-wise mean taken across samples at the five observed
concentrations is plotted in blue; the estimated mean function from the
FPCA procedure at the five observed concentrations is plotted in red.

Figure 5
Tauc plot derived for the composites using UV–visible spectra.

Table 2
The two estimated principal scores corresponding to the eigenfunctions
for each sample.

Sample ÂA1 ÂA2

1 0.4417 �0.0102
2 0.4641 0.0067
3 �0.1102 �0.1725
4 0.1226 �0.0968
5 0.3406 �0.0009
6 0.2738 �0.0931



amorphous nature of the polymer. The interstial NiCl2 mol-

ecules in the matrix exhibit a hopping mechanism for

conduction, and hence there is a linear increase in conductivity

with concentration.

It is seen from Fig. 9(b) that all six samples exhibit an almost

linear relationship with the concentration of NiCl2 in the

polymer network. This is because Niþ ions are embedded in

the polymer matrix with the dielectric constant of the polymer

matrix, resulting in an increase in the conductivity.

4.4. Tensile strength

The interstial NiCl2 breaks the polymer network and leads

to the weakening of chemical bonds. This results in a decrease

in the mechanical strength of these polymer composites, and

thus the test of their tensile strength (Figs. 10 and 11) shows a

decrease with the dopant concentration. Fig. 11(a) shows such

a decreasing trend of tensile strength and Fig. 11(b) plots the

eigenfunctions, which explain the main modes of variation.
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Figure 7
(a) Estimated correlation surface plot of optical band gap. (b) Predicted
functions for each of the six samples across a fine grid of dopant
concentration.

Figure 6
(a) Estimated mean function using smoothing splines on pooled data
across six samples. (b) Scree plot depicting the number of eigenfunctions
against % of variation explained. (c) Three estimated eigenfunctions
displaying modes of variation.



5. Relationship between structural parameters

Having obtained mean estimates of the behaviour of each

structural parameter with respect to dopant concentration, we

are in a position to examine how the parameters vary with

respect to each other, again as a function of dopant concen-

tration. It has typically been assumed, at least for data analysis,

that the structural parameters, both micro and macro, behave

independently of each other. However, the FDA techniques

used in this paper, through the consistent estimation of the

mean function, caution us against such an assumption. The

plots in Fig. 12 illustrate the pairwise relationships between

the parameters. The surface plot in Fig. 13 between crystallite

area, optical band gap and conductivity at 1 kHz, at identical

dopant concentrations, uncovers some interesting properties.

For instance, the plot of mean crystallite area against mean

optical band gap, as functions of dopant concentration, in
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Figure 8
(a) Estimated mean function using smoothing splines on pooled data
across six samples. (b) Scree plot depicting the number of eigenfunctions
against % of variation explained. (c) Three estimated eigenfunctions
displaying modes of variation.

Figure 9
(a) Estimated correlation surface plot of conductivity at 1 kHz. (b)
Predicted functions for each of the six samples across a fine grid of dopant
concentration.



Fig. 12 indicates that their relationship is an increasing func-

tion, for a fixed value of conductivity at 1 kHz; however, we

can observe from the surface plot that this is not true for all

dopant concentrations, when conductivity is not held fixed.

This informs us that the parameters perhaps ought not to be

treated as independent of one another. While such a beha-

viour could be attributed to sampling variability, the consis-

tency of the FPCA procedure and the mean function obtained

as a solution to the optimization problem in equation (6) imply

that the observed behaviour in the surface plot will not change

drastically for other samples.

6. Conclusions

We have proposed some novel methods from functional data

analysis for analysing various analytical results obtained for

polymer composite data, which can be extended further to any

material system. The main aim behind this work is to develop

a data-driven approach to investigating the relationships
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Figure 10
(a) Estimated mean function using smoothing splines on pooled data
across six samples. (b) Scree plot depicting the number of eigenfunctions
against % of variation explained. (c) Two estimated eigenfunctions
displaying modes of variation.

Figure 11
(a) Estimated correlation surface plot of tensile strength. (b) Predicted
functions for each of the six samples across a fine grid of dopant
concentration.



between the structural parameters of a material and their

influence on other physical properties. From this perspective,

the statistical nature of the article is unavoidable and in fact

offers good insight into the complex dependencies between

the structural parameters and their effect on the physical

properties of a material, as a function of the dopant concen-

tration. Our framework allows for the study of functional

relationships manifesting in an X-ray scattering pattern in a

unified manner under the FDA framework, wherein discreti-

zation effects are accounted for.

We have used the WPPF procedure to compute micro-

crystalline parameters such as crystallite area and strain for

polymer composites for various percentage concentrations of

NiCl2. Six trials in each sample were used to obtain

measurements which were analysed using techniques from

functional data analysis, leading to the estimation of the

functional relationship between the parameters and the

percentage concentration of NiCl2, in conjunction with details

of their global and local characteristics through a suitable basis

representation. From this a maximum crystallite area of

15.04 Å2 corresponding to the percentage of NiCl2 of 1.4% in

the polymer composites was estimated. Similar analyses were

carried out for the other physical parameters, such as

conductivity, tensile strength and energy band gap, and

maximum values and corresponding percentage concentra-

tions were determined: a maximum energy gap of 3.55 eV is

attained at a concentration of 0.0% of NiCl2; a maximum

tensile strength of 61 MPa is attained at a concentration of

0.0% NiCl2; and a maximum conductivity of 6.25 �

10�5 S cm�1 is attained at a concentration of 2.5% NiCl2.

These estimates are useful for designing materials for a

particular application in industry. The results of our analyses

caution against viewing the different parameters as indepen-

dent quantities. The proposed FDA framework can be used to

investigate the relationships between the structural para-

meters in a functional regression setting; this will be pursued

in future work.
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