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We introduce a novel measure of performance of polymer composites based on physical parameters whose behaviour depends on lev-
els of dopant concentration used during their preparation. The performance measure is based on a joint analysis of measurements of
the physical parameters exhibiting non-trivial correlations that vary across different levels of dopant concentrations. In contrast to
traditional multivariate analysis, we treat data from parameter measurements as being obtained from functional parameters, and de-
velop the performance measure based on the joint average function of parameters that encodes the correlation structure. An optimal
level of dopant concentration is then ascertained with respect to the performance measure. While the proposed measure is general
enough to be applicable to any chosen physical parameters, we demonstrate its utility in the context of assessing performance using
microstructural and nonlinear optical parameters. Computing of the measure and optimal dopant concentration are carried out using
Monte Carlo sampling, which further facilitates uncertainty quantification.

1 Introduction

There is continued interest in the study of polymers and polymer composites [1]owing to their prominent
role in several industrial applications [2], including high intensity lasers, optical computing and photonic
devices [3,4]. Typically the study of polymer composites entails detailed experimental analysis of data
pertaining to physical parameters that characterise various properties of the polymer (e.g. size, energy
gap). Data on the physical parameters is obtained by using doping agents at different concentration lev-
els (e.g. Ammonium diHydrogen Phosphate (ADP)) during polymer preparation. Multivariate analy-
sis based on principal component analysis and clustering on physical parameters data is quite common
[5,6]. However, a drawback of this approach is that effect of dopant levels on correlations between pa-
rameters is not captured and quantified since dopant information is not explicitly included as part of the
data analysis.
Lack of dopant level information affects the wider applicability of polymers, since it is crucial for their
affordable use to not only understand their properties through study of the physical parameters but also
have knowledge on a narrow range of optimal dopant levels during their preparation. What is required is
an objective assessment of performance of a polymer in any given application: how can one quantify the
performance of a polymer with respect to the measured physical parameters at various dopant concen-
tration levels? This necessitates undertaking two tasks:

1. understanding dependencies and correlations between structural and non-structural parameters [7]
using experimental data;

2. understanding behaviour of these parameters as functions of dopant concentration levels over a range
of possible values, including the levels used in the making of polymer composites.
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The key challenge in carrying out the tasks is that the experimental parameters exhibit nonlinear cor-
relations, behaviour and magnitude of which vary by level of dopant concentrations [8]. An additional
difficulty is that data on the parameters are obtained only at a handful of dopant concentration values
from a possible range of values, determined by laboratory conditions and experimental costs. Knowledge
of optimal concentration level of the dopant for a given application, at least within a certain range, will
enable experimenters to make judicious use of resources while setting up and carrying out experiments
with polymer composites.
In this article we propose a novel measure of performance of a polymer composite that enables assess-
ment at any dopant concentration based on data at a small number of concentration levels, and can be
profitably used to determine an optimal dopant concentration level. The measure satisfies two comple-
mentary desiderata associated with the above mentioned tasks. Construction of the measure is based on
viewing data values of parameters at a small number of dopant concentration levels as discrete realisa-
tions of a vector-valued function over an interval of concentration values. This perspective enables us to
smoothly interpolate between dopant values in a manner that borrows strength between correlated pa-
rameter values at neighbouring concentrations, while simultaneously borrowing information across sev-
eral experimental trials for the parameters.
Specifically, we shall use Multivariate Functional Principal Component Analysis (MFPCA) [9] to esti-
mate a vector-valued function that represents average behaviour of the correlated parameters as a func-
tion of dopant concentration levels. This extends our efforts in [10] wherein each parameter was analysed
independently of the others at the cost of ignoring correlations between parameters, which is a crucial
requirement in the analysis of structural and non-structural parameters [11].
We emphasize that the proposed performance measure is general and can be employed on any set of pa-
rameters observed at a handful of dopant concentration levels; this implies that the performance mea-
sure can be used to asses any set of parameters irrespective of their relative importance. In this article,
however, we will focus on its construction and use on data obtained from measurements of structural
and non-structural parameters of polymer composites prepared as PVA (Polyvinyl Alcohol) and PVP
(Polyvinylpyrrolidone) blended films doped with nonlinear organic salt KDP (Potassium diHydrogen
Phosphate) at various concentration levels. In particular, we will consider structural parameters size and
energy gap obtained from X-ray diffraction (XRD) and UV-vis patterns respectively, and non-structural
parameters characterising nonlinear optical properties of the polymer composite obtain from a Z-scan
experiment [12].
Definition of the performance measure as a function of dopant concentration will enable determination of
the optimal dopant concentration level at which maximum performance of the polymer can be obtained.
To the best of our knowledge, this is the first work in literature to simultaneously capture correlations of
parameters across dopant concentration values, and obtain an optimal dopant concentration level within
a single unified framework. Summarily our main contributions are:

1. Definition of a functional measure of performance of a polymer composite that accounts for correla-
tions between measured physical parameters as functions of dopant concentration levels;

2. development of stochastic Monte Carlo-baseds method to compute proposed functional measure of
performance and optimal dopant concentrations, which further engender uncertainty quantification.

2 Microstructural and nonlinear optical parameters

The parameters in our study were obtained from a polymer composite prepared using a solution cast-
ing method based on polyvinyl alcohol (PVA) and polyvinylpyrrolidne (PVP ) blend polymer solutions
doped with 0.2g, 0.5g, 0.8g, 1g and 1.5g of Potassium dihydrogen phosphate (KDP) (in addition to an
undoped blend), resulting in 6 solutions. From each solution measurements of the two microstructural
parameters from an X-ray diffraction pattern characterising crystallite size S and optical band gap (en-
ergy gap) Eg were recorded, and four nonlinear optical parameters from aperture curves arising from a
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Z-scan experiment characterising nonlinear absorption coefficient β and its third order nonlinear sus-
pectibility parameter Imχ, nonlinear refractive index ν and the corresponding third-order suspectibility
Reχ.
Evidently then the parameter vector θ = (β,Eg, Imχ, Reχ, ν, S)T ∈ R6 is measured at five different
dopant concentration levels in the interval D = [0.2, 1.5]. Preliminary multivariate analysis disregard-
ing dopant information reveals significant correlations between the parameters as shown in Figure 1. In

Figure 1: Raw correlations between the parameters.

contrast to standard multivariate analysis, we view the recorded measurements as discrete realisations of
a vector-valued function D 3 t 7→ θ(t) with θ(t) = (β(t), Eg(t), Imχ(t), Reχ(t), ν(t), S(t))T ∈ R6. This al-
lows us to simultaneously smoothly interpolate between dopant values and capture correlations between
the parameters.

3 Sample preparation and data generation

The requisite samples were prepared by solution casting method, where we dissolved 5g of polyvinyl al-
cohol (PVA) in 100ml water, preheated at 70◦C for 30min. This solution was stirred continuously for a
day. Another solution was simultaneously prepared where 2g of Polyvinyl Pyrrolidone (PVP) was dis-
solved in 100ml water at room temperature and stirred for a day. These solutions were mixed in a ratio
of 70:30, ie., 70% of PVA solution and 30% of PVP solution, and were then stirred for a day to prepare
the blend solution. Further, 0.2g, 0.5g, 0.8g, 1g and 1.5g of Potassium dihydrogen phosphate (KDP) was
doped into the prepared blend solution along with an undoped blend resulting in a set of 6 solutions,
which were then stirred for 3hrs and cast onto a casting plate. The casted films were then placed inside
the hot air oven for 8hrs and was maintained at 70◦C. The dried films were then safely placed inside a
zip lock cover for further analysis. Beyond 1.5%, films prepared were brittle in nature and could not be
used. X-ray diffraction pattern to study the microstructure property was recorded using Rigaku smart-
lab with Ni filtered CuKα radiation of wavelength 1.5406 A◦ with usual standard settings.The FTIR
spectra was recorded in transmission mode with spectrophotometer model FTIR-4100 type A, having
a resolution of 4cm−1 in the wavenumber range 600 − 4000cm−1. Ultra violet–visible spectroscopy of the
samples were measured using a Shimadzo UV-1800 UV-Vis Spectrophotometer for a wavelength range
from 200nm to 1100nm. The nonlinear optical properties of the polymer composites were studied using
Z-scan technique [13]. The experiment was performed at an input peak-intensity of 2 × 109W/cm2 with
a Q-switched Nd:YAG laser having 9ns pulse width at 1064nm with a repetition rate of 10Hz. The laser
beam waist at the focused spot was estimated to be 31.4µm and the corresponding Rayleigh length is
2.9 mm. The measurements were carried out on polymer thin films of 0.17mm thickness, which is less
than the Rayleigh length. Hence, the thin sample approximation is valid.

4 Data on parameters and preliminary analysis

The XRD pattern of the polymer composites with different dopant concentration is shown in the left
panel of Figure 2(a). The amorphous nature of the polymer composites can be attributed to the result-
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Figure 2: Left: XRD pattern of polymer composites. Right: FTIR Spectra of the polymer composites.

Figure 3: Left:UV-Vis absorption spectra of the polymer composites. Right: Optical Band Gap of Polymer composites.

ing broad XRD peak at 2θ = 20◦. On increasing the dopant concentration a sharp Bragg peak is ob-
served at 2θ = 24◦ which is due to added KDP indicating an increase in crystalline region. Microstruc-
tural parameters such as crystallite size and strain for the composites were calculated using Williamson
Hall (WH) plot [14] using Full Width at Half Maximum [FWHM] and are shown in Table 1.The FT-IR
spectra obtained for the polymer composites is shown in right panel of Figure 2(b). The prominent ab-
sorption observed at 3100-300 cm−1 and 2950-2800 cm−1 wavelength corresponds to =C-H stretch and
–C-H stretch respectively do change the shape with increase in the concentration of the KDP crystals.
FTIR results indicate structural changes in the PVA/PVP polymer network with the addition of KDP.
The UV-Vis linear absorption spectra for the polymer composites is shown in the left panel of Figure 2.
The spectra shows an absorption band at 300nm which corresponds to n→ π∗ electronic transition.The
negligible single photon absorption observed at 1064nm IR region indicates that the nonlinear optical
measurements carried out in this experiment are under non-resonant excitation.
The optical bandgap of the composites were calculated using Tauc plot method [15]. The plot of (αhν)1/2

vs hν shown in the right panel of Figure 3; here r = 1
2

is considered for indirect transition. The band
gap values associated with our polymer composites is presented in Table 1. From these results, band gap
of the polymer composites decreaes with increase in dopant concentration.
The open aperture Z-Scan curves obtained for the polymer composites are shown in Figure 4. The curves
were obtained by fitting (1) to the data using the method of nonlinear least squares, resulting in mea-
surement values for the two-photon nonlinear absorption coeffiicient βeff ≡ β and linear absorption co-

efficient α via the relation Leff = (1−eαL)
α

, where L is sample thickness, Z is sample position and Z0 is
Rayleigh length. Specifically, the normalized transmittance as a function of sample position is given by
the equation ([16])

T (Z) =
ln(1 + q0(Z))

q0(Z)
, q0(Z) =

I0βeffLeff
(1 + x2)

, (1)

where |q0(Z)| < 1 with x = Z/Z0 and I0 is peak on-axis irradiance at the focus.
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Figure 4: Open aperture curve from Z-Scan technique for pure polymer and polymer composites.

The shape of the open aperture curve indicates that the sample exhibits two photon absorption, where
the transmission is symmetric with respect to the focus (Z=0) and minimum. The nonlinear absorption
coefficient β is related to the imaginary part of third order nonlinear optical susceptibility through the

equation, Im
(3)
χ = n2

0ε0cλβπ, where n0 is linear refractive index, ε0 is permitivity of free space, c is speed
of light in vaccum.
By placing an aperture infront of the detector in open aperture setup the closed aperture experiment is
performed. Here again, the curves for the closed aperture Z-scan were obtained by fitting (1) to the data
by estimating the relevant parameters in (1) using nonlinear least square and is shown in Figure 5.
We observe that as the sample is moved away from the lens the closed aperture curve shows a self defo-
cusing nonlinearity (-ve refractive index) for the polymer composites, which is a peak followed by a val-
ley in the normalized transmittance. This is due to positive lensing in the sample [17]. When the sam-
ple is placed before the focus the positive lensing reduces the farfield divergence allowing for a larger
aperture transmittance. In contrast, with the sample placed after the focus the same positive lensing
moves the focal position closer to the sample resulting in greater farfield divergence and reduced aper-
ture transmittance.
The normalized transmittance for pure nonlinear refraction is given by

T (Z) = 1− 4x∆φ

[(x2 + 9)(x2 + 1)]
, x = Z/Z0, (2)

where ∆φ is on axis phase change given by

∆φ =
∆TP−V

0.406(1− S)0.25
, for |∆φ| ≤ π;

here ∆TP−V is the change in transmittance between peak and valley, S is the linear aperture transmit-
tance. The nonlinear refractive index is given by

ν =
∆φλ

2πLeffI0

(m2/W ).

On the other hand, the nonlinear refractive index n2(esu) is related to ν(m2/W ) as n2(esu) = cn0

40π
ν(m2/W ).

Indeed, the real part of third order nonlinear susceptibility is given by Reχ(3) = 2n2
0ε0cn2(esu). The pa-

rameters derived from both open aperture and closed aperture are tabulated in Table 1. We could not
observe NLO activity in the closed aperture for pure polymer material.
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Figure 5: Closed aperture trace for doped polymer composites.

Sample crystallite Band Gap β Imχ ∇φ n2 Reχ ν

size(Å) Eg(eV) ×10−7 m
W ×10−15 ∇φ ×10−8(esu) ×10−9 ×10−16(m

2

W )

pure 44.56;41.97 2.09;1.96; 1.13;1.06 1.72;1.62; - - - -
45.43;41.10 2.13;1.92 1.15;1.04 1.75;1.58; - - - -
46.73;43.27 2.19;2.03; 1.18;1.10; 1.80;1,67 - - - -

0.2% 42.65; 40.16 2.09; 1.91 1.04; 0.97 1.58; 1.49 0.88; 0.83 4.08; 3.80 7.35; 6.92 2.94; 2.77
43.48; 39.33 2.06; 1.87 1.06; 0.95 1.61; 1.46 0.90; 0.81 4.16; 3.77 7.49; 6.73 3.00; 2.71
44.72; 41.41 2.12; 1.97 1.09; 1.01 1.66; 1.54 0.92; 0.86 4.28; 3.97 7.71; 7.14 3.08; 2.86

0.5% 47.58; 44.81 1.97; 1.86 1.03; 0.97 1.56; 1.47 0.80; 0.75 3.70; 3.49 6.87; 6.46 2.66; 2.51
48.51; 43.89 2.01; 1.82 1.05; 0.95 1.59; 1.44 0.82; 0.74 3.78; 3.42 7.00; 6.33 2.71; 2.46
49.89; 46.20 2.07; 1.92 1.08; 1.00 1.64; 1.52 0.84; 0.78 3.88; 3.60 7.20; 6.67 2.79; 2.59

0.8% 60.66; 57.13 1.87; 1.76 1.06; 0.99 1.60; 1.51 0.96; 0.91 4.45; 4.20 8.01; 7.54 3.21; 3.02
61.84; 55.95 1.91; 1.73 1.08; 0.97 1.63; 1.48 0.98; 0.89 4.54; 4.11 8.16; 7.39 3.27; 2.96
63.61; 58.90 1.96; 1.82 1.11; 1.03 1.68; 1.56 1.01; 0.94 4.67; 4.33 8.40; 7.78 3.36; 3.12

1.0% 46.93;44.20 1.76; 1.65 0.46; 0.43 0.68; 0.65 0.84; 0.79 3.89; 3.66 6.99; 6.58 2.80; 2.63
47.84; 43.29 1.79; 1.62 0.47; 0.42 0.71; 0.64 0.86; 0.77 3.96; 3.59 7.12; 6.45 2.85; 2.58
49.21; 45.57 1.84; 1.71 0.48; 0.45 0.73; 0.68 0.88; 0.82 4.08; 3.78 7.33; 6.79 2.93; 2.72

1.5% 69.39; 65.34 1.58; 1.49 0.78; 0.73 1.18; 1.11 0.96; 0.91 4.45; 4.20 8.01; 7.54 3.21; 3.02
70.73; 64.00 1.62; 1.43 0.79; 0.72 1.20; 1.09 0.98; 0.89 4.54; 4.11 8.16; 7.39 3.27; 2.96
72.75; 67.37 1.66; 1.54 0.82; 0.76 1.24; 1.15 1.01; 0.94 4.67; 4.33 8.40; 7.78 3.36; 3.12

Table 1: Data from parameter measurements derived from both open aperture and closed aperture experiments.
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At each dopant level t ∈ D the nonlinear absorption coefficient β(t) is related to the imaginary part of
third order nonlinear optical susceptibility through the equation,

Imχ(t) = n2
0ε0cλπβ(t),

where n0 is linear refractive index, ε0 is permitivity of free space, c is speed of light in vaccum. Relat-
edly, nonlinear refractive index ν(t) is related to the real part of the third order nonlinear optical sus-
pectibility as

Reχ(t) =
1

40π
2n3

0ε0c
2ν(t).

We thus expect β(t) ∝ Imχ(t) and ν(t) ∝ Reχ for each t ∈ D since n0, ε0 and c do not change with
dopant levels.
On the other hand, raw correlations in Figure 1 indicate the need to study the parameters jointly when
assessing the performance of a polymer. Moreover, correlations between optical parameters β(t), ν(t)
and microstructural parameters S(t), Eg(t) are typically known to be nonlinear and complex [12], which
change with dopant levels t. Since polymer preparation and recording measurements is an expensive and
time-consuming procedure, quantifying such nonlinear dependence is crucial for an experimentalist wish-
ing to ascertain the ‘right’ level of dopant to obtain a ’good’ polymer composite. Our main goal is to
mathematically define and compute a performance measure for a polymer, which then allows one to iden-
tify an optimal dopant level.

5 Multivariate functional data analysis for joint analysis of parameters

Quantifying correlations and dependencies between the parameters as functions of the concentration val-
ues is not possible if the parameters are treated individually, and not jointly, as done in our earlier work
[10] using univariate Functional Principal Component Analysis (FPCA). For joint analysis we consider
Multivariate Functional Principal Component Analysis (MFPCA)[18-20], and carry out analysis of the
experimental parameters, explicitly taking into account their complex dependence structure.
MFPCA constitutes the key first step towards constructing a performance measure of a polymer based
on dependent parameter measurements. We describe the methodology entirely in the context of the data
on parameters obtained above. For a general exposition and details on the precise MFPCA technology
used in this paper, we refer to [9].

5.1 The multivariate Karhunen-Loéve representation

Data presented in the Supplementary Materials forms the basis for joint statistical analysis of these pa-
rameters. Starting from discrete measurements of each parameter at concentrations t =0.2, 0.5,0.8,1,1.5
we obtain the corresponding function θ(t) by linearly interpolation between the points. We do not em-
ploy any smoothing procedures (for e.g. splines) owing to the sparse nature of the measurements (only
5 measurements of the function). Joint analysis of the parameters depends on being able to express θ(t)
in terms of an orthonormal set of basis functions which decompose the observed variation in the data.
Such a decomposition is based on the multivariate Karhunen-Loéve representation of a stochastic pro-
cess, which we now review.
Let L2(D) denote the set of real-valued square-integrable random functions with respect to the Lebesgue
measure on D. Let the set of such functions θ(t), t ∈ D, representing the data, reside in a (product)
Hilbert space H. Assume that θ has a continuous mean function µ(t) := (µ1(t), . . . , µ6(t))T with µk(t) =
E(θk(t)), k = 1, . . . , 6 representing the mean of the kth parameter, and covariance function G(u, v) :=
{Gjk(u, v); (u, v) ∈ D × D; j, k = 1, . . . , 6} where Gjk(u, v) := Cov(θj(u), θk(v)) is the cross-covariance
functions between parameter j and k. When j = k, we get the usual covariance function of parameter j.
When j 6= k, Gjk(·, ·) is interpreted as the covariance function between the two parameters θj and θk.
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Note that for every (u, v) ∈ D × D, G(u, v) is a 6 × 6 positive definite matrix, and G(u, v) is hence a
6× 6 matrix-valued function indexed by D ×D. That is, for (u, v) ∈ D ×D,

G(u, v) =

G1,1(u, v) G1,2(u, v) . . .
...

. . .
G6,1(u, v) G6,6(u, v)

 .

In other words, G(u, v) captures the covariance (and hence correlation) between the six parameters at
each combination of dopant concentrations in D. When u = v, G(u, u) captures covariance between pa-
rameters at a single concentration value u.
Evidently, G(u, v) = G(u, v)T and hence symmetric for every (u, v) ∈ D × D. The function µ(t) repre-
sents the joint mean function of of the six parameters θ(t) and the function G(·, ·) represents the cross-
covariance between the covariance functions {Gj,k(·, ·)} corresponding to the individual θk, k = 1, . . . , d.
The space L2(D) is equipped with the usual inner product 〈θ1, θ2〉 :=

∫
D
fθ1(t)θ2(t)dt with norm ‖f‖ :=

〈θ1, θ2〉1/2. From this an inner product between θ and η on H can be defined as 〈θ,η〉H :=
∑6

k=1〈θk, ηk〉
with norm ‖θ‖H := 〈θ,θ〉1/2H . The multivariate KL representation requires an appropriate integral co-
variance operator G : H → H based on the covariance kernel G(u, v). Note that G can represented as
G(u, v) = (G1(u, v), . . . ,G6(u, v))T , where we can view Gj(u, v) = (Gj1, . . . , Gj6)T , j = 1, . . . , 6 as the
jth row of the 6 × 6 matrix G(u, v) for every (u, v) ∈ D ×D. Observe that for η(t) = (η1(t), . . . , η6(t)T ,
〈Gj(u, ·),η〉H =

∑6
k=1〈Gjk(u, ·), ηk〉, and we can hence define the covariance operator G for a given

η ∈ H as

Gη(u) :=

∫
G(u, v)η(v)dv =

〈G1(u, ·),η〉H
...

〈G6(u, ·),η〉H

 .

The covariance G is symmetric and non-negative definite, and hence by the multivariate version of Mer-
cer’s theorem [21], the following decomposition exists:

〈Gj(u, ·),φl〉H =
6∑

k=1

〈Gjk(u, ·), φl〉 = λlφjl(u), (3)

where {φl = (φ1l, . . . , φ6l)
T , l = 1, 2, . . .} is a set of orthonormal basis functions in H satisfying 〈φl,φm〉H =

δlm, and λl is the l-th eigenvalue in non-increasing order with corresponding eigenfunction φl(u). For
random functions θ ∈ H, the decomposition above permits the multivariate KL representation based
on the covariance kernel G [22],

θ(t) = µ(t) +
∞∑
l=1

ξlφl(t), t ∈ D, (4)

where the random coefficients are ξl = 〈θ − u,φl〉H with Eξl = 0 and E(ξlξm) = λlδlm. Explicitly, for
each t ∈ D, the representation in eq. (4) isθ1(t)

...
θ6(t)

 =

µ1(t)
...

µ6(t)

+ ξ1

φ11(t)
...

φ61(t)

+ ξ2

φ12(t)
...

φ62(t)

+ · · ·

The eigenvalues λj represent the amount of variability in θ explained by the R6-valued multivariate func-
tional principal component φj, while the multivariate functional principal component score ξj serve as
the weights for φj in the above representation. Thus the {φj, j = 1, 2, . . .} capture the dominant modes
of the variations in the vector-valued random function θ,and the scores {ξj} (along with the eigenvalues
{λj}) characterize the correlations between the individual component functions θk, k = 1 . . . , 6. In prac-
tice, a truncated version of the KL representation

θM(t) = µ(t) +
M∑
k=1

ξkφk(t), t ∈ D, (5)
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Figure 6: Mean functions of β(t), Eg(t), Imχ(t) (top row), and Reχ(t), ν(t), S(t) (bottom row) following MFPCA.

for some reasonably large positive integer M . The joint eigenfunctions φj are the multivariate analogues
of the univariate eigenfunctions in the KL expansion presented in our earlier paper [10]. They represent
the joint modes of variation in the set of six parameters under consideration.

5.2 Estimation of joint mean function and modes of variation

While (5) provides the theoretical basis for the required decomposition, joint analysis of parameters with
data requires estimating each quantity in the expression. In our earlier work [10] we had detailed the
estimation procedure for FPCA for each parameter within θ. In the interests of brevity, it suffices here
to note that the estimation under the univariate setup can be adapted and extended to the multivariate
setting upon combining the univariate functions to obtain θ. There are several ways of carrying out the
extension (see [19.20], for example). In this paper, we will adopt the one proposed in [9]. For our pur-
poses we merely note that using eq. (5), for a fixed M , the function θ(t) can be represented in the esti-

mated (truncated) joint orthonormal basis {φ̂l, l = 1, . . . ,M} as

θ̂(t) = µ̂(t) +
M∑
l=1

ξ̂lφ̂l(t), t ∈ D, (6)

where µ̂, {ξ̂j} and {φ̂j} are estimates of µ, {ξj} and {φj} respectively. Consequently, the jth parameter
θj, j = 1, . . . , d assumes the representation

θ̂j(t) = µ̂j(t) +
M∑
l=1

ξ̂lφ̂jl(t), t ∈ D.

We refer the interested reader to [9] for details on the estimation procedure. The key point to note here
is that starting from discrete observations, through the use of MFPCA, we are able to capture and quan-
tify correlations between the experimental parameters as functions of concentration values. Figure 6 shows
the estimated mean functions of the parameters using (6) with M = 2. We choose M = 2 since most of

the variation in the sample of functions are almost fully captured in the first eigenfunction φ̂1(t) shown
in Figure 7. The corresponding eigenvalue is 8.79 and the second eigenvalue is 0.0000245 offering further
evidence that most of the information is present in the first eigenfunction. Theoretically, we have that
β(t) ∝ Imχ(t) and ν(t) ∝ Reχ, and this behaviour is observed in the estimated mean functions as well.
Another perspective of the correlation between the parameters can be obtained by plotting 2D curves
corresponding to the estimated mean functions of the individual parameters: [0.2, 1.5] 3 t 7→ (µ̂i, µ̂j)

T , i, j =
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Figure 7: Individual eigenfunctions of the parameters β(t), Eg(t), Imχ(t), Reχ(t), ν(t), S(t) (from left to right) in the first
Principal Component direction (6-dimensional vector-valued eigenfunction). Plotted are the mean function plus/minus a
constant factor times each eigenfunction.

1, . . . , 6, i 6= j. Figure 8 provides more evidence of the correlations, and clearly demonstrates the advan-
tages associated with joint estimation of the mean functions of the parameters under the MFPCA frame-
work.

6 Performance measure and optimal dopant level

The MFPCA procedure provides us with an estimate µ̂(t) = (µ̂1, µ̂2, . . . , µ̂6)T of the joint mean func-
tion µ(t) of θ(t) = (β(t), Eg(t), Imχ(t), Reχ(t), ν(t), S(t))T at any dopant concentation level in t ∈ D =
[0.2, 1.5] that accounts for correlations (linear or nonlinear) between microstructural and nonlinear op-
tical parameters, as evidenced in Figures 6 and 8. This provides information on how the parameters, on
an average, vary with one another at any dopant level. Thus an overall measure of performance of the
polymer at any dopant level can be define using µ̂(t), from which the optimal dopant concentration level
can be determined.
Our definition of such a performance measure will be based on the component estimated mean functions
µ̂k(t), k = 1, . . . , 6. Since the parameter values in the data are all positive and on different scales (for ex-
ample, S(t) ∈ [39, 71] for any dopant level, significantly larger when compared to the other parameters
with a combined range [0, 8]; see Supplementary Materials for data), we first normalise each mean func-
tion to obtain

µ̂nk(t) :=
µ̂k(t)

supt∈D µ̂k(t)
, k = 1, . . . , 6,

that provides an estimated joint normalised mean function µ̂n(t) = (µ̂n1 (t), . . . , µ̂n6 (t))T . We consider a
weighted convex combination

wT µ̂n(t) =
6∑

k=1

wkµ̂
n
k(t),

as a measure of performance, where w = (w1, . . . , w6)T , where for each k = 1, . . . , 6, wk ≥ 0 with∑6
k=1wk = 1. The weights can represent prior beliefs of the experimenter (for e.g. one may wish to have

crystallite size to have maximum influence on the measure of performance), or can be derived from ex-
perimental conditions. However, the arbitrariness with the choice of weights w implies that the weighted
combination wT µ̂n(t) can significantly change in shape depending on the weights. In order to circum-
vent this issue, we define a measure of performance known as the performance index function of a poly-
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Figure 8: Two-dimensional estimated mean functions of parameters against concentration values. Top row (left to right): β
and Eg, β and Imχ, β and Reχ; bottom row (left to right): β and ν, β and S.

mer composite as

P(t) =

∫
∆5

wT µ̂n(t)dλ, t ∈ D,

where ∆5 = {w ∈ R6 : 0 ≤ wk ≤ 1,
∑

k wk = 1} is the five-dimensional unit simplex R6, and dλ is the
uniform distribution (volume measure) on ∆5. An equivalent definition is

P(t) =
√

6

∫
Σ5

xT0 µ̂
n(t)dx,

where dx in the Lebesgue measure on R5, Σ5 = {x = (x1, . . . , x5)T ∈ R5 : xi ≥ 0,
∑

i xi ≤ 1}, and

x0 = (1 −
∑5

i=1 xi, x1, . . . , x5)T . Armed with the performance index P(t), expressed as a function of
dopant level t ∈ D, the optimal dopant level then is defined as

topt := argmaxt∈DP(t) .

Note that by virtue of its definition 0 ≤ P(t) ≤ 1 for all t ∈ D. Since topt remains invariant to scale
transformations of P(t), it is easy to see that topt would be unaffected by the normalisation µ̂n(t) of the
estimated mean function µ̂(t).
The performance index P(t) (and consequently topt) cannot be computed in closed form since the esti-
mated (normalised) mean function µ̂n(t) is computed from the data numerically. The integral with re-
spect to the Lebesgue measure over the set Σ5 can be computed numerically in principle. Alternatively,
we note that P(t) can be expressed as the expectation E(wT µ̂n(t)) taken with respect to the uniform
distribution on the simplex ∆5. We thus approximate the integral using Monte Carlo (MC) by sampling
from the uniform distribution dλ on the simplex ∆5 through the mapping w 7→ P(t). The Dirichlet dis-
tribution on ∆5 with parameters α1, . . . , α6 is the given by the probability density function

f(w) =
Γ(
∑

i αi)∏6
i=1 Γ(αi)

6∏
i=1

wαi−1
i , w ∈ ∆5

11



Figure 9: MC estimate of performance index P(t) (solid red) with 95% confidence bands (dashed blue) with green dashed
line identifying topt = 0.7571. The MC samples are in grey.

which when α1 = · · · = α6 = 1 reduces to the uniform distribution on ∆5. It is evidently easier to sample
uniformly from ∆5 as opposed to the set Σ5.

6.1 Monte Carlo estimation and uncertainity quantification of P(t) and topt

The MC approximation of P(t) is given by Pmc(t) := 1
N

∑N
i=1w

T
i µ̂

n(t), where w1, . . . ,wN is a random
sample from the uniform distribution on ∆5. From well-known properties of the MC method, we note
that E(Pmc(t)) = P(t) for every t ∈ D and is hence an unbiased estimator. From the Strong Law of
Large Numbers (SLLN) we also note that Pmc(t)→ P(t) as N →∞ almost surely, and consequently the
approximation error of the MC method measured using the root mean squared error is√

E
(
[Pmc(t)− P(t)]2

)
= O(N−1/2),

which decays to zero fairly quickly with increasing MC sample size N .
A second level of MC sampling can now be carried out to obtain uncertainty or distributional estimates
of the MC estimator Pmc(t). That is, Pmc(t) can again be computed J times using further MC sampling

of w from uniform distribution on ∆5 to obtain P(j)
mc(t), j = 1, . . . , J .

Let P̄mc(t) = 1
J

∑J
j=1P

(j)
mc(t), which will be quite close to Pmc(t). From the Central Limit Theorem, as

J → ∞ for each t ∈ D, P̄mc(t) approximately follows a univariate Gaussian distribution with mean

Pmc(t) and variance σJ = 1
J−1

∑J
i=1(P(j)

mc(t)− P̄mc(t)). However, since Pmc(t)→ P(t), by another applica-

tion of SLLN we also have P̄mc(t)→ P(t) almost surely as min{N, J} → ∞.
This enables us to construct approximate pointwise 95% confidence bands for P(t) using MC samples
with

CI95,J(t) =

[
P̄mc(t)− 1.96

σJ√
J
, P̄mc(t) + 1.96

σJ√
J

]
.

An additional advantage of the MC method is that for each MC sample P(j)
mc(t) we can obtain the opti-

mal dopant level t
(j)
opt, j = 1, . . . , J . This enables us to quantify uncertainty of the optimal dopant concen-

tration level as well. Left pnael of Figure 9 and 10 illustrate the MC estimate Pmc(t) along with point-

wise 95% confidence bands, in addition to an estimate of topt; right panel shows the density plot of t
(j)
opt.

The bands are quite narrow suggesting that our estimate of P(t) is not highly variable and is a good ap-
proximation the integral used to define the performance index. Our estimate of the optimal dopant con-
centration level topt is 0.7571. Using the MC estimates we assess its variability and note that it is mostly
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Figure 10: Estimated probability density of topt from MC samples.

restricted to the interval [0.73, 0.76]. An estimate of the distribution of topt is provided in Figure 10; the
left skew nature of the density is due to about 10 samples (out of J=1000) of topt being close to 0.73, but
the rest are concentrated around 0.757. Thus, excluding the 10 slightly outlying ones, the density is ef-
fectively symmetric around 0.757. We have used N = J = 10000 in order to obtain the MC estimates.

7 Concluding remarks

The proposed measure of performance is based on Multivariate Functional Principal Component Anal-
ysis (MFPCA) of data pertaining to microstructural and optical parameters of a polymer composite.
For the polymer composite under consideration, the proposed performance measure suggests an optimal
dopant concentration level of 0.76%, which is quite close to level of 0.8% used during polymer prepara-
tion. Beyond 1.5% the composite films become brittle and unsuitable for applications. It is however im-
portant to note that the performance measure (and MFPCA) can be used on data from any set, contain-
ing any number, of physical parameters of interest in studies of polymer composites.
The definition of performance measure P(t) as an integral over the weights w ensures that it is invariant
to any particular choices of weights. If indeed the experimenter is compelled to view certain parameters
as more important than others then the integral can be dispensed with by using P(t) = wT µ̂n as an
alternative measure of performance for a particular choice of weights w.
The use of Monte Carlo techniques based on sampling uniform weights from the unit simplex ∆5 is key
to quantifying uncertainty in estimating the performance measure and optimal dopant level. Such un-
certainty arises since data measurements can be recorded with measurement error, and moreover, the
P(t) and topt change with changing data composition. This aspect of the methodology proposed can be
a valuable data analytic tool in the field of polymer composites.
Computation was carried out in MATLAB and statistical software R using the package MFPCA [9]. Source
code can be made available on request.
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