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a b s t r a c t

The problem of distinguishing a Brownian bridge from a Brownian motion, both with
possible drift, on the closed unit interval, is investigated via a pair of hypothesis tests. The
first, tests for observations obtained at n discrete time points to be arising from a Brownian
bridge with drift by embedding the Brownian bridge into a mixture of Polya trees which
represents the non-parametric alternative. The second test, tests in an identical manner,
for the observations to be coming from a Brownian motion with drift. The Bayes factors
for the two tests are derived and then combined to obtain the Bayes factor for the test to
distinguish between the two Gaussian processes. The Tierney–Kadane approximation of
the Bayes factor is derived with an error approximation of order O(n−4).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The problem of modeling processes in finance, biology etc., using Brownian motion and its variants has received consid-
erable attention, for example, see Steele (2000) and Berg (1993). For better predictive results, it is clearly important that one
can fit an appropriate model from a pool of possible processes. In this paper, we specifically consider two special Gaussian
processes: the Brownianmotion and the Brownian bridge. For real valued i.i.d. observations X1, X2, . . . , Xn recorded at times
t1, t2, . . . , tn are assumed to be arising from a Brownian bridge B(t) or Brownian motion W (t), both with possible drift. It
is further assumed that t1, t2, . . . , tn are deterministic. This assumption, as will be shown later, does not qualitatively affect
the test statistic greatly. The Brownian bridge on the unit interval, intuitively, can be understood as a Brownian motion not
only ‘‘tied down’’ at the origin but also at time t = 1. Hence,most uncertainty is present in themiddle of the bridge. Suppose,
we are given n observations recorded at discrete times t1, . . . , tn, ti ∈ [0, 1], we would be hard pressed to distinguish with
certainty, between the Gaussian processes. DasGupta (1996) describes the difficulty in distinguishing the two processes by
considering the L1 mean distance between them and showing the distance on average to be quite small. Suppose B(t) and
W (t) be a Brownian bridge and standard Brownian motion respectively. The L1 norm between the two is given by

Dt =

∫ δ

0
|B(t)+ µt − (W (t)+ µt)|dt

=

∫ δ

0
|B(t)− W (t)|dt

which defines ameasure on the ‘difference’ in their respective sample paths on the interval [0, δ]. Using results from Johnson
and Killeen (1983), DasGupta showed that

E(Dδ) =

√
π

2
√
2


δ

2 − δ

3/2

(1)
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is small for δ = 0.05, 0.5, 1. The variance of the Brownian bridge at time t is t(1 − t) and that of the Brownian motion is t .
Hence for small t , we can intuitively understand the difficulty in distinguishing the two. The nature of the problem ensures
that, approaching the problem from a model selection perspective, we no longer have one model nested within the other
since both processes are considered with possible drift components. It is important to note that we assume to be observ-
ing the underlying stochastic process only at finite discrete time points. It hence becomes natural, at least from a testing
perspective, to consider the problem as a multivariate testing problem.

The problem, despite being viewed as amultivariate one, is by nomeans routine. Since themodels under the null and the
alternative hypotheses are not nested, a regular likelihood ratio test for the equality of the covariance matrices is inappro-
priate. Also, since we are observing the process only at finite discrete time points, a finite sample test will be desirable for
better accuracy, especially for predictive purposes and this necessity renders Bartlett’s test for equality of covariance matri-
ces inappropriate too. We hence adopt a Bayesian approach and derive the Bayes factor by considering a pair of hypothesis
tests. We proceed in the spirit of Berger and Guglielmi (2001) in considering a null parametric model vs a non-parametric
alternative.With the objective ofmodel elaboration, formore generality, one is better off using a non-parametric alternative
as opposed to a parametric model elaboration technique.We first propose a Bayes factor to distinguish between a Brownian
motion with drift and a non-parametric alternative by utilizing a mixture of Polya tree process prior on the alternative. We
then derive the Bayes factor to distinguish a Brownian bridgewith drift and same non-parametric alternative.We then com-
bine the two Bayes factors to obtain a Bayes factor for a test between Brownian motion and the Brownian bridge. Section 2
contains definitions and some preliminaries of Polya trees andmixed Polya trees.We then formally specify our problem and
set it up in terms of two pairs of hypotheses. In Section 3 the analytical expression for the Bayes factors is derived in detail
and the Tierney–Kadane approximation of the Bayes factor is obtained.

2. Polya trees and mixtures of Polya trees

2.1. Preliminaries

Polya trees form a class of distributions for a random probability measure P and are a special case of tail-free processes
(refer to Fabius (1964) and Freedman (1963) for more details). For a rigorous treatment of Polya trees and their properties
we direct the reader to Lavine (1992), Lavine (1994), Maudlin et al. (1992) and Ferguson (1974). We follow the notation
used in Lavine (1992). Let E = 0, 1, E0

= ∅, Em be the m-fold product E × E × · · · × E and E∗
=


∞

0 Em. Let (B0, B1) be a
partition of R. Then let (B00, B01) be partition of B0 and (B10, B11), a partition of B1. Continuing in this fashion ad infinitum,
we obtain a sequence of partitions

∏
= {πm = 0, 1, . . .} of R such that


∞

0 πm generates the Borel sets and every B ∈ πm+1
is obtained by splitting some B′

∈ πm into two pieces. Hence the number of partitions at levelm is 2m. Thus in general for all
ϵ = ϵ1, . . . , ϵm ∈ E∗, Bϵ splits into Bϵ0 and Bϵ1 . Degenerate splits are permitted and hence it is possible to have a Bϵ0 = Bϵ
and Bϵ1 = ∅. A convenient way to picturise the partition is given byMuliere andWalker (1997). Imagine a particle cascading
through these partitions. It starts in R and moves into Bϵ0 with probability Y0 or Bϵ1 with probability 1 − Y0. In general on
entering Bϵ , the particle could either move into Bϵ0 or Bϵ1 with probability Yϵ0 or 1 − Yϵ0 . We can now formally define the
Polya tree distribution.

A random probability measure P on R has Polya tree distribution with parameter (
∏
,A), denoted as P ∼ PT(

∏
,A), if

there exist nonnegative numbers A = {αϵ, ϵ ∈ E∗
} and random variables Y = {Yϵ, ϵ ∈ E∗

}, respectively, such that

• all the random variables in Y are independent
• for every ϵ, Yϵ0 ∼ Beta(αϵ0 , αϵ1)
• for everym = 1, 2, . . . and every ϵ = ϵ1, . . . , ϵm ∈ E∗

P (Bϵ1,...,ϵm) =

m∏
j=1,ϵj=0

Yϵ1,...,ϵj−1

m∏
j=1,ϵj=1

(1 − Yϵ1,...,ϵj−1).

The αϵ ’s determine the smoothness of the realizations of P and they also control how closely the distribution of P is
concentrated around its mean (Lavine, 1992). The choice of αϵ is of some importance and we refer the reader to Berger and
Guglielmi (2001) for further information. Dirichlet processes are special cases of Polya trees when for every ϵ ∈ E∗, αϵ =

αϵ0 +αϵ1 as shown in Ferguson (1974). Polya trees are conjugate priors. IfP |
∏
,A ∼ PT(

∏
,A) and X1, . . . , Xn|P ∼ P i.i.d.,

then P |X1, . . . , Xn ∼ PT(
∏
,A∗), where A∗

= {α∗
ϵ = αϵ + nϵ, ϵ ∈ E∗

} and nϵ = number of X1, X2, . . . , Xn ∈ Bϵ . A random
probabilitymeasure is said to bemixture over θ of Polya trees, withmixing distributionπ and parameters {

∏
θ ,Aθ }, θ ∈ Θ ,

if the conditional distribution of P , given θ , is PT(
∏
θ ,Aθ ) (Berger and Guglielmi, 2001). Our motivation for using a mixture

Polya tree prior over Dirichlet process or mixture Dirichlet process priors is that the Polya tree process can give probability
one to the set of continuous distributions.

2.2. Model specification

The rationale for the choice of the mixture of Polya tree prior on the alternative is multifold. As elegantly described
by Berger and Guglielmi (2001), we wish to ‘‘utilize’’ the typically improper noninformative prior distributions for drift
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component. Along with the advantages offered by the mixture of Polya tree processes in modeling continuous densities,
by embedding each parametric model into a mixture of Polya trees, we are able to construct a suitable probability model
‘‘around’’ the models of interest, i.e., the Brownian motion and the Brownian bridge, and also provide a sensitive but useful
elaboration of the twomodels. Our proposedmethod leads to an elegant and computable expression for the combined Bayes
factor.

We follow closely, the methodology in Berger and Guglielmi (2001, Sec. 2.2) in specifying our test(s) of hypothesis and
also in notation. We embed the parametric model f (x|µ) (standard Brownian motion/Brownian bridge) into the Polya tree
process.We center the Polya tree aroundGµwhich denotes the probabilitymeasure corresponding to f . This is accomplished
by choosing a mixture of Polya trees with parameters (

∏
µ,Aµ), such that

E(Pµ) = Gµ. (2)

We adopt the Polya tree construction in Berger and Guglielmi (2001) and not the canonical construction with a fixed mean
given in Lavine (1992). Let W (t) denote a standard Brownian motion and µt + W (t) represent the Brownian motion with
drift. Letµt+B(t) denote a Brownian bridgewith drift.We are interested in the question of testing if observations X1, . . . , Xn
corresponding to time t1 ≤ t2 ≤, . . . ,≤ tn are coming from a Brownian motion with drift or a Brownian bridge with drift.
For simplicity, we consider non-random ti ∈ [0, 1] for all i = 1, . . . , n. Let x1, . . . , xn represent the realization of the process
at the mentioned times. Let

H(1)0 : X(t) ≡ µt + B(t)

H(1)1 : X(t) ≡ Pµ, µ ∈ R.

We have by virtue of the above specification, embedded the parametric Brownian bridge model within the non-parametric
mixture of Polya trees by specifying the Brownian bridge as the mean of the mixture Polya process. We consider a
noninformative prior π(µ), which is shown to be appropriately calibrated in Berger and Guglielmi (2001). Also, let,

H(2)0 : X(t) ≡ µt + W (t)

H(2)1 : X(t) ≡ Pµ, µ ∈ R.

We derive the Bayes factors for the pair of hypotheses, BF1 and BF2 respectively and then by considering the ratio BF1
BF2

, we
can comment on the problem of distinguishing between the two processes.

3. Bayes factor calculations

3.1. Bayes factor for H(1)0 vs H(1)1

Let f1(x|µ), where x = (x1, . . . , xn), be the likelihood under H(1)0 . Hence

f1(x|µ) =
1

√
2π |Σ1|

1/2
e

−1
2 (x−µt)

′Σ
−1
1 (x−µt)

where t = (t1, . . . , tn) and Σ1 =

min(ti, tj) − titj


. Let π(µ) = 1, the usual noninformative prior. It is useful now to also

note thatΣ2 =

min(ti, tj)


whereΣ2 is the dispersion matrix under H(2)0 . We mention a few relations which are useful in

our calculations (DasGupta, 1996).

• Σ1 = Σ2 − tt′

• Σ−1
1 = Σ−1

2 +
Σ

−1
2 tt′Σ−1

2
1−tΣ−1

2 t

• Σ−1
2 t = (0, 0, . . . , 1)′.

Then,

−1
2

[
(x − µt)′Σ−1

1 (x − µt)
]

=
−1
2
(x − µt)′


Σ−1

2 +
Σ−1

2 tt′Σ−1
2

1 − tΣ−1
2 t


(x − µt)

=
−1
2

[
(x − µt)′Σ−1

2 (x − µt)+ (x − µt)′
Σ−1

2 tt′Σ−1
2

1 − tΣ−1
2 t

(x − µt)
]

=


−t′Σ−1

2 t
2


µ−

x′Σ−1
2 t

t′Σ−1
2 t

2

+
(x′Σ−1

2 t)2

2t′Σ−1
2 t


−

1
2


(x − µt)′

Σ−1
2 tt′Σ−1

2

1 − tΣ−1
2 t

(x − µt)



=
−tn
2


µ−

xn
tn

2

+
x2n
2tn

−
(xn − µtn)2

2(1 − tn)
.
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Consequently, the marginal density of the sample X1, . . . , Xn under H(1)0 is

m0(x1, . . . , xn) =
1

√
2π |Σ1|

1/2
e

x2n
2tn

∫
µ

e

−tn
2


µ−

xn
tn

2

e
−(xn−µtn)2

2(1−tn) π(µ)dµ

=
1

√
2π |Σ1|

1/2

∫
µ

e
−tn(xn−µtn)2

2(1−tn) π(µ)dµ

=
e

x2n
2tn

|Σ1|
1/2


1 − tn
tn

.

Following the notation introduced in Polya tree preliminaries, from Berger and Guglielmi (2001) we obtain,

m1(x1, . . . , xn|µ) = f (x|µ)ψ(µ),

where

ψ(µ) =

n∏
j=2

m∗(xj)∏
m=1

α′
ϵm(xj)

(µ)

αϵ(m−1)0(xj)(µ)+ αϵ(m−1)1(xj)(µ)


αϵm(xj)(µ)


α′

ϵ(m−1)0(xj)
(µ)+ αϵ′

(m−1)1(xj)
(µ)

 (3)

with ϵm(xj) is the index ϵ1 · · · ϵm such that xj belongs to the Bϵ1,...,ϵm , for each level m, and α′
ϵm(xj)

(µ) is equal to αϵm(xj)(µ)

plus the number of observations among {x1, . . . , xj} that belong to Bϵ1,...,ϵm(xj) and for each xj, the product in (3) is up to the
smallest levelm∗(xj), such that no xi, i < j, belong to Bϵm(xj). Now,

m1(x1, . . . , xn) =
1

√
2π |Σ1|

1/2

∫
µ

e
−1
2 (x−µt)

′Σ
−1
1 (x−µt)ψ(µ)π(µ)d(µ)

=
1

√
2π |Σ1|

1/2
e

x2n
2tn

∫
µ

e
−tn


µ−

xn
tn

2
2(1−tn) ψ(µ)d(µ).

Hence, the Bayes factor for first test is

BF1 =
m0(x1, . . . , xn)
m1(x1, . . . , xn)

=
1

(Φ
(1)
n ∗ ψ)


xn
tn

 , (4)

whereΦ(1)
n denotes the N


0, 1−tn

tn


CDF and (Φ(1)

n ∗ ψ) denotes the density convolution ofΦ(1)
n and ψ .

3.2. Bayes factor for H(2)0 vs H(2)1

We derive BF2 in the same manner as above. Note that

m0(x1, . . . , xn) =
1

√
2π |Σ2|

1/2
e

x2n
2tn

∫
µ

e
−tn


µ−

xn
tn

2
2 π(µ)dµ

=
e

x2n
2tn t−1/2

n

|Σ2|
1/2

m1(x1, . . . , xn) =
1

√
2π |Σ2|

1/2
e

x2n
2tn

∫
µ

e
−tn


µ−

xn
tn

2
2 ψ(µ)π(µ)dµ

which implies BF2 =
m0(x1, . . . , xn)
m1(x1, . . . , xn)

=
1

(Φ
(2)
n ∗ ψ)


xn
tn


whereΦ(2)

n denotes the N

0, 1

tn


CDF and (Φ(2)

n ∗ ψ) denotes the density convolution ofΦ(2)
n and ψ .

3.3. Bayes factor for distinguishing B(t) and W (t)

We can now combine BF1 and BF2 to obtain the required composite Bayes factor under 0 − 1 loss for testing
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H(1)0 : X(t) ≡ µt + B(t)

H(2)0 : X(t) ≡ µt + W (t).

It follows that the Bayes factor for H(1)0 vs H(2)0 is

BF =
BF1
BF2

=

(Φ
(2)
n ∗ ψ)


xn
tn


(Φ

(1)
n ∗ ψ)


xn
tn

 . (5)

Thus, we obtain a very elegant expression for the Bayes factor of test to distinguish a Brownian motion from a Brownian
bridge, both with drift on the closed unit interval. Observe that the Bayes test rejects H(1)0 if and only if

(Φ(2)
n ∗ ψ)


xn
tn


< (Φ(1)

n ∗ ψ)


xn
tn


.

The test represents an exact finite sample test with some desirable properties. It is of interest to note that, owing to the
structure of the covariance matrices of Brownian motion and the Brownian bridge, the Bayes factor depends only on xn and
tn, the last observed value. Our assumption of deterministic times ti, i = 1, . . . , n, is not too stringent since we only then
need to consider tn from a random sample having an absolutely continuous distribution function on [0, 1], which becomes
a part of the convolution in the numerator and denominator of the Bayes factor. As more observations are recorded, i.e. as

n increases, tn → 1 and (Φ(1)
n ∗ ψ)


xn
tn


→ ∞ with the inequality always satisfied and Bayes factor ruling in favor of the

Brownianmotionwith drift. This result is intuitively appealing as the Brownian bridge in our setup is essentially a Brownian
motion conditioned to assume the value zero as time t = 1.

3.4. Tierney–Kadane approximation

The Bayes factor BF, albeit an exact test, can be approximated with a fair degree of accuracy by using the Tierney–Kadane
approximations (see Tierney and Kadane, 1986) of the integrals as posterior means in the numerator and the denominator.
For instance, consider the convolution

(Φ(1)
n ∗ ψ)


xn
tn


=

1
√
2π


tn

1 − tn

1/2 ∫
µ

e
−tn


µ−

xn
tn

2
2(1−tn) ψ(µ)π(µ)d(µ)

=

1
√
2π


tn

1−tn

1/2 
µ
e

−tn

µ−

xn
tn

2
2(1−tn) ψ(µ)π(µ)d(µ)

1
√
2π


tn

1−tn

1/2 
µ
e

−tn

µ−

xn
tn

2
2(1−tn) d(µ)

since denominator is the N


xn
tn
, tn

1−tn


density and π(µ) = 1. Let

L = log


1
√
2π


+ log


tn

1 − tn

1/2

+

−tn

µ−

xn
tn

2
2(1 − tn)

the log-likelihood under H(1)0

L∗
= log


1

√
2π


+ log


tn

1 − tn

1/2

+

−tn

µ−

xn
tn

2
2(1 − tn)

+ logψ(µ).

Therefore,

(Φ(1)
n ∗ ψ)


xn
tn


=


µ
eL

∗

d(µ)
µ
eL

.

Assuming the requisite regularity conditions for the Tierney–Kadane approximations and noting our assumption of non-
random ti, i = 1, . . . , n, we can observe that L and L∗ attain maxima at µ̂ =

xn
tn
. Now,

L′′(µ̂) =
−tn

1 − tn
and σ 2

=
−1

L′′(µ̂)
=

1 − tn
tn

L∗
′′

(µ̂) =
−tn

1 − tn
+ g


xn
tn


and σ ∗2

=
−1

L∗′′
(µ̂)

=
(1 − tn)

tn

1 + g


xn
tn


− g


xn
tn
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where g(v) =
ψ(v)ψ ′′(v)−ψ ′(v)2

ψ ′(v)2
. From the Tierney–Kadane approximation we obtain

(Φ(1)
n ∗ ψ)


xn
tn


=
σ ∗

σ
e(L

∗(µ̂)−L(µ̂))(1 + O(n−2))

=

 tn

tn

1 + g


xn
tn


− g


xn
tn


1/2

ψ


xn
tn


(1 + O(n−2))

with the error in approximation being of order O(n−2). In a similar fashion,

(Φ(2)
n ∗ ψ)


xn
tn


=

 tn
tn − g


xn
tn


1/2

ψ


xn
tn


(1 + O(n−2)).

Consequently,

BF =

 tn

1 + g


xn
tn


− g


xn
tn


tn − g( xntn )

1/2

(1 + O(n−4))

with an approximation error of order O(n−4)with probability one under the true value ofµ. We direct the reader to Section
5 of Berger and Guglielmi (2001) for the computation details of ψ and consequently g . By embedding each of the models
under consideration into Polya trees and then taking the ratio of the resulting BF1 and BF2, we are able to obtain a closer
approximation of the required Bayes factor BF. The approximation should not deflect attention from the fact that the Bayes
factor BF is indeed an exact test for finite samples. The approximation performed in order to obtain a more ‘‘friendly’’ form
in fact, is of order O(n−4), which compares favorably with O(n−2) (see Greenstreet and Connor, 1974): the order to which
Bartlett’s test statistic belongs in testing the equality of covariance matrices is a chi-square random variable. In general, our
method does not offer an alternative to Bartlett’s test in comparing covariancematrices but offers amore suitable alternative
to the problem we are addressing.

4. Concluding remarks

We develop a hypothesis testing procedure using Bayes factor for distinguishing between a Brownian bridge and Brow-
nian motion on the closed unit interval, both with drift. In order to compute the Bayes factor, we embed both hypotheses
within a non-parametric class of alternatives using a mixture of Polya trees and then obtain the required Bayes factor by
taking the ratio of the two Bayes factors. This approach offers certain computational as well as conceptual advantages in
terms of model elaboration, complementing the use of a flat noninformative prior on the drift parameter. By directing our
efforts towards deriving the Bayes factor, we exploit the rich decision–theoretic component of our approach: quantifying
the utility in choosing our null hypothesis of modeling the process using a Brownian bridge with drift. Finally, the Tier-
ney–Kadane approximation of the Bayes factor is derived, which offers a computable form of the Bayes factor with an error
approximation of order O(n−4).
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