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Abstract In this chapter, we describe several biomedical applications of geomet-
ric functional data analysis methods for modeling probability density functions,
amplitude and phase components in functional data, and shapes of curves and sur-
faces. We begin by reviewing parameterization-invariant Riemannian metrics and
corresponding simplifying square-root transforms for each case. These tools allow
for computationally efficient implementations of statistical procedures on the ap-
propriate representation spaces, including computation of the Karcher mean and
exploration of variability via principal component analysis. We then showcase appli-
cations of these tools in multiple biomedical case studies based on various datasets
including Glioblastoma Multiforme tumors, Diffusion Tensor Magnetic Resonance
Image-based white matter tracts and fractional anisotropy functions, electrocardio-
gram signals, endometrial tissue surfaces and subcortical surfaces in the brain.

1 Introduction

Improvements in medical data acquisition technology, especially non-invasive imag-
ing technology, have resulted in proliferation of large, complex datasets. There are
many goals in analyzing such data depending on the application of interest, ranging
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from assessment of regular aging patterns to diagnosis and monitoring of various
diseases. The types of imaging data of interest greatly vary in their properties, e.g.,
functional Magnetic Resonance Imaging (fMRI) measures dynamic brain activity
through changes in blood flow, structural Magnetic Resonance Imaging (MRI) pro-
duces images of the anatomy using magnetic fields and Diffusion Tensor Magnetic
Resonance Imaging (DT-MRI) maps diffusion of water molecules in biological tis-
sues. In spite of this apparent heterogeneity, many medical imaging datasets share
two common characteristics: (1) the representation space of the data is fundamentally
non-Euclidean and (2) the data is functional (infinite-dimensional) in nature. These
two properties of the data introduce a major challenge for statistical analysis as most
traditional statistical methods apply to data residing in relatively low-dimensional
Euclidean spaces. Our focus in this book chapter is on representation and statistical
analysis of various aspects of biomedical imaging data including (1) patterns of voxel
values via probability density functions (pdfs, smoothed histograms of voxel inten-
sities) [44], (2) elastic functional data that contains amplitude and phase variabilities
[48], (3) shapes of curves [47, 31] and (4) shapes of surfaces representing objects in
medical images [35, 19]. As will be seen later, all of these data types benefit from
a Riemannian geometric approach to data analysis. To unify these different data
objects of interest, we refer to them commonly as geometric data objects throughout.

Statistical analysis of geometric data objects starts with the definition of a suitable
mathematical representation and metric that can be used for their comparison. Once
an appropriate representation space and a Riemannian metric on that space have
been defined, statistical analysis proceeds via the metric structure. In particular,
this approach allows one to (1) compute summary statistics such as the mean and
covariance, (2) explore variability in a sample via adaptations of principal component
analysis and (3) define basic statistical models [49, 20]. We consider each of pdfs,
elastic functional data, and shapes of curves and surfaces separately to define the
relevant Riemannian geometric representation spaces. To tie all of the frameworks
together, we point out the commonalities between the Riemmanian geometry used
for statistical analysis in each case.

We begin with statistical analysis of texture via a pdf representation. Texture
here refers to the pattern of voxel values inside an object of interest in a medical
image; it is a fundamental appearance property of objects in images [49]. We form
the pdf by (1) vectorizing the relevant voxel values, (2) generating their histogram
and (3) smoothing the histogram [44]. The result is a functional data object with
two constraints: the pdf must be positive everywhere on its domain and it must
integrate to one. The representation space of pdfs is the infinite-dimensional simplex,
a constrained linear space. To define a Riemannian structure on this space, we use
the well-known Fisher-Rao metric [42, 25, 46]. An important property of this metric
is that it is invariant to reparameterization [7], a property used later for defining a
Riemannian structure on the space of elastic functions and shapes.

The second type of geometric data objects of interest are elastic functions. Elastic
functions naturally contain two different sources of variability: amplitude variability
and phase, warping or parameterization variability [38]. A main goal in elastic
functional data analysis is to separate these two sources of variability and define
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statistical methods to analyze them. The Riemannian setting for this type of analysis
necessitates invariance to function reparameterization. Conveniently, we apply an
extension of the Fisher-Rao metric used for pdfs in this setting [48].

Finally, we use methods from elastic shape analysis to study outlines (boundaries
of objects resulting in curves and surfaces) representing objects in medical images
[47, 31, 20]. The shape of such boundaries is a fundamental physical property of the
objects, and provides indispensable information about the health and development
of anatomical structures in the medical setting. The notion of shape is invariant
to translations, scales, rotations and reparameterizations of the curves and surfaces
[26]. In this setting, we use elastic Riemannian metrics which have been shown
to have such desired invariances. These elastic metrics are also extensions of the
Fisher-Rao metric introduced for pdfs.

In all of the above-mentioned settings, the initial Riemannian geometric structure
of the representation spaces is quite complicated and necessitates numerical methods
for simple tasks such as computing geodesic distances. Luckily, there exist square-
root transforms in each of the cases that greatly simplify the geometry, and result
in Riemannian geometric tools with analytical expressions. This, in turn, allows for
development of large-scale data analytic approaches that can be applied in various
biomedical settings.

Our focus in this book chapter is not on describing recent methodological ad-
vances in this area, but rather on elucidating various biomedical applications of
geometric methods for functional data analysis. While we outline the relevant math-
ematical details to keep our discussion self-contained, the main aim is to showcase
the breadth of applicability of the methods in medical imaging. As a result, our
methodological descriptions are terse and avoid many technical details; we refer the
interested readers to the recent books [49] and [20] for specific details. The rest of
this chapter is organized as follows. Section 2 describes the Riemannian geometry
of representations spaces for the four geometric data objects of interest: (1) pdfs, (2)
elastic functional data, (3) shapes of curves and (4) shapes of surfaces. In Section
3, we describe a general nonparametric framework, based on tools provided by the
Riemannian geometric backdrops, for computing summary statistics and assessing
variability in random samples. Section 4 discusses multiple case studies for each
type of geometric data object. Here, we draw on previous studies to showcase the
breadth of biomedical applications of the described methods. Finally, we close with
a brief summary in Section 5.

2 Mathematical Representation: Riemannian Metrics and
Simplifying Transforms

We begin with a brief review of the different Riemannian metrics and representations
for pdfs, amplitude and phase components of elastic functional data, shapes of
curves and shapes of surfaces. In each case, we highlight a particular square-root
transformation, which greatly simplifies the computational implementation of the
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framework. For more details on these approaches, please refer to Chapters 4 (pdfs
and elastic functional data), 5 and 6 (shapes of open and closed curves, respectively)
in [49], and [20] (shapes of surfaces). Throughout, we use ‖ · ‖ and 〈〈·, ·〉〉 to denote
functional norms and inner products (not necessarily L2), and | · | and 〈·, ·〉 to denote
the norm and inner product in a finite-dimensional Euclidean space Rk .

2.1 Probability Density Functions

Without loss of generality, our description focuses on univariate densities on [0, 1].
Let P denote the Banach manifold of such pdfs defined as P = {p : [0, 1] →
R+ |

∫ 1
0 p(t)dt = 1}. For any point p ∈ P, the tangent space is defined asTp(P) = {v :

[0, 1] → R|
∫ 1

0 v(t)dt = 0}; this is a vector space of all possible perturbations of the
pdf p.We proceed to define aRiemannianmetric onP, whichwill be used to compute
geodesic distances between two pdfs and summary statistics of samples of pdfs. The
nonparametric Fisher-Rao Riemannian metric (simply FR metric hereafter), for any
two tangent vectors v1, v2 ∈ Tp(P) is defined as [42, 25, 46]

〈〈v1, v2〉〉p =

∫ 1

0
v1(t)v2(t)

1
p(t)

dt. (1)

TheFRmetric is invariant to reparameterizations of densities [7], a nicemathematical
property. One drawback of this metric is the difficulty associated with computing
geodesic paths and distances due to the fact that the metric changes from point to
point on the space of pdfs, requiring numerical procedures.

To simplify computation, we choose an equivalent representation of the space
P via the square-root density (SRD) representation [4]. Under this representation,
the complicated FR metric becomes the standard L2 metric and the space of pdfs P
becomes the positive orthant of the unit hypersphere in L2. The SRD is defined as a
function ψ = +√p (we omit the + sign hereafter for notational convenience). Then,
the inverse mapping is unique and is simply given by p = ψ2. Hence, the space of
all SRDs is given by Ψ = {ψ : [0, 1] → R+ |

∫ 1
0 ψ(t)2dt = 1}. The L2 Riemmanian

metric on Ψ is defined as 〈〈w1,w2〉〉 =
∫ 1

0 w1(t)w2(t)dt, where w1, w2 ∈ Tψ(Ψ) and
Tψ(Ψ) = {w : [0, 1] → R|

∫ 1
0 ψ(t)w(t)dt = 0}.

As the Riemannian geometry of Ψ equipped with the L2 metric is well-known,
geodesic paths and their lengths can now be computed analytically. The geodesic
distance between ψ1, ψ2 ∈ Ψ is simply given by

d(ψ1, ψ2) = θ = cos−1
( ∫ 1

0
ψ1(t)ψ2(t)dt

)
. (2)

The corresponding geodesic path between ψ1, ψ2 ∈ Ψ, parameterized by τ ∈ [0, 1],
is
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η(τ) = 1/sin(θ){ψ1 sin(θ(1 − τ)) + ψ2 sin(τθ)}. (3)

It is easy to see that the geodesic distance θ is bounded above by π/2. In addition to
geodesic paths and distances, we often use the exponential and inverse exponential
maps for computing statistical summaries of a sample of pdfs. The exponential map
at a point ψ1 ∈ Ψ, denoted by exp : Tψ1 (Ψ) 7→ Ψ, is defined as

expψ1
(w) = cos(‖w‖)ψ1 + sin(‖w‖)(w/‖w‖), (4)

where ‖w‖ =
( ∫ 1

0 w(t)2dt
)1/2

. The inverse exponential map, denoted by exp−1
ψ1

:
Ψ 7→ Tψ1 (Ψ), is given by

exp−1
ψ1
(ψ2) = (θ/sin(θ))(ψ2 − ψ1 cos(θ)). (5)

These two mappings can be used to transfer points from the nonlinear representation
space Ψ to linear tangent spaces of Ψ, and vice versa.

2.2 Amplitude and Phase in Elastic Functional Data

One can extend the above FR metric-based framework to more general functional
data. One difficulty that arises in this setting is the need for registration when com-
paring or modeling such observations. This is due to the fact that functional data
often contains two forms of variability: amplitude and phase [41, 49, 48, 38]. Am-
plitude describes the vertical variability along the y-axis while phase describes the
horizontal variability along the x-axis (also called domain warping), i.e., the param-
eterization of the functional observations. Thus, extracting phase variability from
functional data through a registration procedure requires a metric that is invariant to
reparameterization. As we have already established that the FR metric is invariant
to reparameterizations of pdfs, we will use its extension for functional data.

We introduce some additional notation to formalize the discussion. Without loss
of generality, we restrict our attention to absolutely continuous functions on the
domain [0, 1], and focus only on nonlinear warpings of this domain. We denote
the space of such functions as F . We use the set Γ = {γ : [0, 1] → [0, 1]|γ(0) =
0, γ(1) = 1, γ is a diffeomorphism} to represent all possible nonlinear domain
warpings. Then, for a function f ∈ F , the composition f ◦ γ denotes the domain
warping of f using γ, i.e., a reparameterization of the function f . To extend the
FR metric for pdfs to this more general class of functions, we start with absolutely
continuous functions f : [0, 1] → R such that Ûf > 0; call the set of such functions F0
and letTf (F0) denote the tangent space toF0 at f . For any f ∈ F0 and v1, v2 ∈ Tf (F0),
the FR metric can be redefined as [48]

〈〈v1, v2〉〉 f =

∫ 1

0
Ûv1(t)Ûv2(t)

1
Ûf (t)

dt. (6)
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As in the case of densities, this metric is invariant to domain warpings, 〈〈v1 ◦ γ, v2 ◦
γ〉〉 f ◦γ = 〈〈v1, v2〉〉 f , for all γ ∈ Γ, f ∈ F0 and v1, v2 ∈ Tf (F0), but also difficult to
work with computationally.

To alleviate this issue, we define a square-root transform similar to the SRD.

Define the square-root slope function (SRSF) of f as q = sign( Ûf )
√
| Ûf (t)|. Since

we have assumed Ûf > 0, the SRSF in this case simply becomes q =
√
Ûf , i.e., the

square-root of an unnormalized pdf. Importantly, under the SRSF representation,
the FR metric becomes the standard L2 metric. While we have so far restricted our
attention to functions with positive derivative, the SRSF allows us to treat more
general cases. Next, we return to the space F of all absolutely continuous functions,
i.e., Ûf is allowed to take arbitrary values including zero (when Ûf = 0, the SRSF also
takes value 0). Then, using the L2 metric on the space of all SRSFs corresponding
to functions in F , the FR metric implicitly extends from F0 to F . If the function f
is absolutely continuous then the resulting SRSF is square-integrable or an element
of L2([0, 1],R) (simply L2 for brevity) [43]. The inverse mapping from an SRSF to
its corresponding function is unique up to a vertical translation. If one additionally
keeps track of the starting point f (0), then the mapping is unique and is given by
f (t) = f (0) +

∫ t

0 q(s)|q(s)|ds. Furthermore, the SRSF of a warped function f ◦ γ is
given by (q, γ) = (q ◦ γ)

√
Ûγ.

This basic setup allows us to define amplitude and phase mathematically. The
amplitude of a function remains unchanged under warping, i.e., f and f ◦ γ have the
same amplitude for any γ ∈ Γ. The amplitude is thus defined as the equivalence class
[ f ] = { f ◦ γ |γ ∈ Γ}, which contains all possible domain warpings of f . The space
of all amplitudes is the quotient space F/Γ. In contrast to amplitude, the definition
of phase is only relative. Given two functions f1 and f2, the relative phase of f1 with
respect to f2 is defined as

γ21 = arg min
γ∈Γ
‖q1 − (q2 ◦ γ)

√
Ûγ‖, (7)

where q1 and q2 are the SRSFs of f1 and f2, respectively. This minimization is
usually solved using the dynamic programming algorithm [43]. The optimization
problem in Equation 7 is referred to as the pairwise registration of f2 to f1.

Next, we focus on defining a distance for amplitude and phase components. The
distance between amplitudes of two functions f1 and f2 is defined as

da( f1, f2) = d([q1], [q2]) = min
γ∈Γ
‖q1 − (q2 ◦ γ)

√
Ûγ‖ = ‖q1 − (q2 ◦ γ21)

√
Ûγ21‖. (8)

A geodesic path between two amplitude functions can then be constructed using a
straight line connecting q1 and (q2 ◦ γ21)

√
Ûγ21. Similarly, in order to compare the

phase components of the two functions f1 and f2, we use the relative phase between
them, γ21. Then, the phase distance is defined as

dp( f1, f2) = cos−1
( ∫ 1

0

√
Ûγ21(t)dt

)
. (9)
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This definition is based on an adaptation of the FRmetric to Γ, and is measured using
the SRSFs of warping functions [27]. In fact, the SRSF of any warping function is
simply an SRD. Thus, the phase distance uses the SRD representation introduced
earlier to compute distances between warping functions. To construct a geodesic
path between two warping functions, after transforming them to their SRSFs, one
can simply use Equation 3.

2.3 Shapes of Open and Closed Curves

The extension ofmethods for functional data analysis to curves in higher-dimensional
Euclidean spaces comes from so-called elastic shape analysis. While functional data
requires invariance to reparameterization only, shape analysis additionally requires
invariance to translation, scale and rotation, also referred to as similarity shape-
preserving transformations. As in the two previous sections, we begin by introducing
a Riemannian metric, which is naturally invariant to all such transformations.

Let f : D → Rk, k > 1 denote an absolutely continuous, parameterized curve
in the Euclidean space Rk with the domain of parameterization given by D = [0, 1]
for open curves and D = S1 for closed curves. With a slight abuse of notation, let
F denote the set of all such curves. While the framework described here applies to
k-dimensional curves, biomedical applications generally consider 2D and 3D curves
as data objects, as seen in later sections. The most difficult of the aforementioned
invariances is that to parameterization, and it requires the definition of a nonstandard
Riemannian metric on F referred to as the elastic metric. We begin by identifying
the curve f with the pair (r, θ) where r = | Ûf | is the speed function and θ = Ûf

| Ûf |

is the angle function. The only information lost when passing from f to the pair
(r, θ) is translation, which is one of the nuisance, shape-preserving transformations.
Also, let (δr1, δθ1) and (δr2, δθ2) be two tangent vectors at (r, θ). Then, the elastic
Riemannian metric is defined as

〈〈(δr1, δθ1), (δr2, δθ2)〉〉(r,θ) = a
∫
D

δr1(t)δr2(t)
1

r(t)
dt + b

∫
D

δθ1(t)T δθ2(t)r(t)dt .

(10)
We note three important properties of this metric. First, it is a weighted combination
of two terms, one capturing changes in the speed function, i.e., stretching deforma-
tions, and one capturing changes in the angle function, i.e., bending deformations.
Second, the stretching term in the metric should look familiar: it is the same as the
FR metric introduced earlier for densities. Third, this metric is invariant to reparam-
eterizations of curves, in addition to translation, scaling and rotation. Unfortunately,
as in the two previous cases, this metric is difficult to use in practice.

Fortunately, one can extend the SRSF representation introduced for functional
data to this more general case. This new representation of curves is called the square-
root velocity function [21] and is defined as q =

√
rθ =

Ûf
√
| Ûf |
. In fact, the SRVF

and SRSF are equivalent for univariate curves. The SRVFs of absolutely continuous
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curves reside in L2(D,Rk) (simply L2 for brevity). An important property of this
representation is that the complicated elastic metric, with a = 1/4 and b = 1,
simplifies to the standard L2 metric under the SRVF transform. We note that the
SRVF is not the only transform that simplifies a specific instance of the elastic
metric to the L2 metric; for alternative approaches see [53, 2, 29, 54]. We will use
the SRVF to mathematically formalize the notion of shape so that any two curves that
are within a translation, rescaling, rotation and reparameterization of each other are
considered to be the same data object. Since the SRVF is a function of the derivative
of the original curve, it is automatically translation invariant (this is obvious since the
elastic metric is translation invariant). Forcing a unit length constraint on the curves
results in unit L2 norm SRVFs, i.e., ‖q‖2 = 1. Hence, the set of unit length open
curves is C = {q : [0, 1] → Rk |‖q‖2 = 1}, i.e., a unit sphere in L2; C is also referred
to as the pre-shape space. Restricting attention to closed curves, the pre-shape space
becomes Cc = {q : S1 → Rk |‖q‖2 = 1,

∫
S1 q(t)|q(t)|dt = 0}, which is a subspace

of C due to the closure constraint. In the remainder, to keep the discussion general,
we do not make a distinction between these two pre-shape spaces and simply use
C. The rotation and reparameterization variabilities can be filtered out through a
suitable definition of equivalence classes. Let [q] = {O(q, γ)|γ ∈ Γ,O ∈ SO(k)}
denote all possible rotations and reparameterizations of q, where SO(k) = {O ∈
Rk×k |OTO = OOT = 1, det(O) = 1} is the special orthogonal group of rotations,
Γ = {γ : D → D|γ is a diffeomorphism} is the set of reparameterizations and
(q, γ) = (q ◦ γ)

√
Ûγ. Each equivalence class represents a shape uniquely and the

collection of all equivalence classes is the shape space S = C/(SO(k)×Γ). The final
ingredient is the ability to compare shapes using a distance on S. Under the SRVF
representation, this distance is given by

d([q1], [q2]) = min
O∈SO(k),γ∈Γ

cos−1
( ∫
D

q1(t)TOq2(γ(t))
√
Ûγ(t)

)
dt. (11)

The optimization problem in Equation 11 is solved using a combination of Pro-
crustes analysis [10] and dynamic programming [43]. For visualization, a geodesic
path between two shapes can be constructed using Equation 3 with inputs q1 and
O∗(q2, γ

∗), where O∗ and γ∗ denote the minimizers of Equation 11.

2.4 Shapes of Surfaces

Lastly, we consider shape analysis of surfaces. This case evolves similarly to the
case of curves. Again, with a slight abuse in notation, let F denote the space of
smooth embeddings f : D → R3, where the domain of parameterization D can be
a unit sphere (closed surfaces), a unit square (quadrilateral surfaces), a unit cylinder
(cylindrical surfaces), a unit disk (hemispherical surfaces), etc. Furthermore, let Γ
be the set of all diffeomorphisms of D. We use n(t) ∈ R3 to denote the normal
vector to the surface at the point t ∈ D, i.e., n(t) = ∂ f

∂u (t)×
∂ f
∂v (t), where (u, v) are the
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coordinates on the domainD. The infinitesimal area measure at a point t is given by
r(t) = |n(t)| and the normalized normal vector is ñ(t) = n(t)

r(t) . We will represent the
surface f using the pair (r, ñ); as this representation depends on partial derivatives
only, it is automatically invariant to translations. Let (δr1, δñ1) and (δr2, δñ2) be two
tangent vectors at (r, ñ). A reparameterization invariant Riemannian metric on the
space of surfaces is given by [19]

〈〈(δr1, δñ1), (δr2, δñ2)〉〉(r,ñ) =
1
4

∫
D

δr1(t)δr2(t)
1

r(t)
dt +

∫
D

δñ1(t)T δñ2(t)r(t)dt.

(12)
Again, the first term in this metric resembles the FR metric introduced earlier,
and captures changes in the infinitesimal areas of surface patches, i.e., stretching
deformations. The second term captures changes in the direction of the unit normal
vectors, i.e., bending deformations. The metric in Equation 12 is a special case of a
more general elastic metric for surfaces [19]. Due to the difficulty of working with
this metric in practice, we define an alternative representation of surfaces, called
the square-root normal field (SRNF), which simplifies this metric to the standard L2

metric. The SRNF of a surface f is given by q =
√

rñ = n√
|n(s) |

, The SRNF of a

reparameterized surface f ◦ γ, for a γ ∈ Γ, is given by (q, γ) = (q ◦ γ)
√

Jγ, where Jγ
is the determinant of the Jacobian of γ.

As in the case of curves, we seek a framework that is invariant to all shape-
preserving transformations (translation, scale, rotation and reparameterization). The
SRNF representation is automatically invariant to translations. To produce invariance
to scaling, we rescale all surfaces to unit area, resulting in SRNFs with unit L2 norm.
As in the case of curves, this amounts to restricting attention to the unit sphere in
L2. We then define a distance on the shape space of surfaces by minimizing over
equivalence classes of the form [q] = {O(q, γ)|γ ∈ Γ, O ∈ SO(3)}

d([q1], [q2]) = min
O∈SO(3),γ∈Γ

cos−1
( ∫
D

q1(t)TOq2(γ(t))
√

Jγ(t)
)
dt. (13)

As in the case of curves, the optimal rotation is found using Procrustes analysis [10].
Computation of the optimal reparameterization requires a gradient descent algorithm
[28]. A geodesic path between two shapes can be constructed using Equation 3 with
inputs q1 and O∗(q2, γ

∗), where O∗ and γ∗ are the minimizers of Equation 13.

3 Nonparametric Metric-based Statistics

We provide a general recipe for computing the sample mean, covariance and per-
forming principal component analysis (PCA). Our tools rely on Karcher means for
metric spaces and local linear approximations via the Riemannian structure. Since all
four geometric data objects described in Section 2 rely on L2 Riemannian geometry,
we provide a single description here for brevity.
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3.1 Karcher Mean

The sample Karcher mean [24] of a collection of points (i.e., pdfs, amplitude func-
tions, phase functions or shapes) x1, . . . , xn from a metric space (X, d) is defined as
the minimizer of the Karcher variance

µ̂ = arg min
x∈X

1
n

n∑
i=1

d(x, xi)2. (14)

This definition, with slight modification when dealing with equivalence classes, is
applicable to all four metric spaces discussed in Section 2. Computation of the
Karcher mean is carried out using gradient-based algorithms [40, 36, 32], which
generally iterate between three steps: (1) projection of data from the representation
space to the linear tangent space at the current estimate of the mean via the exponen-
tial map, (2) computation of the gradient of the cost function in Equation 14, and (3)
update of the current estimate of the mean using the inverse exponetial map. In the
case of functional data, the Karcher mean is used as a template for mutliple function
registration. That is, once the Karcher mean is estimated, the amplitude components
of all functions are defined through pairwise registration to the Karcher mean; this
also results in the phase component, computed with respect to the mean [48].

3.2 Covariance Estimation and Principal Component Analysis

Exploration of variability in a sample of geometric data objects can be carried out by
choosing local coordinates in the vicinity of the Karcher mean µ̂. The Riemannian
structure allows one to conveniently linearize the data representation space via the
tangent space at the mean, Tµ̂, and to select Euclidean coordinates in this space.

As before, let x1, . . . , xn and µ̂ represent the data objects of interest and their
Karcher mean, respectively. We begin by projecting each xi, i = 1, . . . , n onto
the tangent space at the mean using the inverse exponential map resulting in tan-
gent vectors v1, . . . , vn. Using this tangent space representation, we estimate the
covariance matrix based on discretized versions of the tangent vectors denoted by
vi, i = 1, . . . , n. Assuming the dimension of each vi is M , the sample covariance
matrix is given by KM := 1/(n − 1)

∑n
i=1 viv

T
i . To study variability using PCA, we

apply the spectral decomposition to the covariance matrix KM = UΣUT , where the
orthogonal matrix U contains the principal components (PCs) or principal direc-
tions of variability, and the diagonal matrix Σ contains the PC variances. In typical
biomedical applications, the number of observations is smaller than the dimension-
ality of each tangent vector, i.e., n < M . Thus, there are at most n − 1 positive
values in the matrix Σ. The submatrix formed by the first r columns of U, Ur , spans
the r-dimensional principal subspace of the observed data, and one can reexpress
the data using coordinates in this subspace via principal coefficients computed as
ci = UT

r vi, i = 1, . . . , n. One can then use these principal coefficients for further sta-
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Fig. 1 (a) MRI slice for a subject with GBM; the delineated region corresponds to the tumor. (b)
Mask identifying the tumor region. (c) Estimated voxel intensity pdf corresponding to the tumor.

tistical modeling, e.g., PC regression [3]. A common approach to modeling complex
data objects is through tangent PCA-based models such as the truncated wrapped
Gaussian distribution [31] or by directly modeling the principal coefficients.

4 Biomedical Case Studies

4.1 Probability Density Functions

Assessment of Glioblastoma Multiforme Tumor Texture Variability: Glioblas-
toma multiforme (GBM), also known as grade IV glioma, is the most common form
of a malignant brain tumor in adults [15]. It is a morphologically heterogeneous dis-
ease with extremely poor prognosis; also, predicting the impact of standard cancer
treatments such as chemotherapy and radiation therapy becomes considerably chal-
lenging. Thus, exploring tumor heterogeneity is critical in cancer research as inter-
and intra-tumor differences have stymied the systematic development of targeted
cancer therapies [9]. MRI is one of the modern medical imaging techniques that
has been used to investigate tumor development in various contexts. MRI scans are
primarily used to exhibit and evaluate the location, size, growth and progression of
tumors, which serve as indicators for clinical decision making. Various physiolog-
ical features are extracted by using voxel-level data to visualize the progression (or
regression) of tumors. This is generally done by constructing voxel value histograms.
However, in most cases, only simple summaries of the entire histograms are used for
statistical analysis. This approach has two main drawbacks. First is the subjectivity
in the choice of the number and location of the summary features (e.g., quantiles
or percentiles, etc.). Second, and more importantly, these summary features fail to
capture the entire information in a histogram of voxel intensities, and thus cannot
detect small-scale and sensitive changes in the tumor due to treatment effects [23].

Alternatively, one can exploit the entire histogram, or its corresponding smoothed
density profile, for the tumor region in an MRI. This was the approach taken in a
recent paper that introduces DEMARCATE, a self-contained pipeline for geomet-
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Fig. 2 (a)-(b) MRI slices from two different GBM subjects, with the pdf corresponding to the
tumor intensity values. (c) Geodesic path between the pdfs for subject (a) and subject (b).

ric clustering and validation of GBM tumor texture profiles [44]. Semi-automated
segmentation methods [1] can be employed to delineate the tumor region in the
whole brain MRI scan. In subsequent analyses we use the voxel-level information
from the axial slice with the largest tumor area only. This is done for simplicity of
visualization and can be easily extended to the full 3D tumor. Figure 1(a) shows a
single slice of an MRI scan for a subject with GBM, where the delineated region
corresponds to the tumor. This region is displayed as a binary mask in panel (b).
The voxel values inside the tumor are used to estimate a pdf, which is displayed in
panel (c); it contains detailed and refined information about the voxel-level tumor
characteristics. Hence, under this setup, a sample of GBM scans is represented by
a sample of voxel value pdfs corresponding to the tumor region in the MRI scan of
each subject. The imaging data used in this study was retrieved from The Cancer
Imaging Archive (www.cancerimagingarchive.net).

Next, we consider a comparison of two subjects based on their voxel value pdfs.
Figure 2(a)-(b) shows the MRI slice for two subjects, and the corresponding pdfs
of the tumor intensity values. The geodesic path between the two pdfs under the
FR metric is shown in Figure 2(c). The displayed geodesic was discretized with
five equally spaced points on the interior of the path. Finally, we consider a random
sample of ten subjects with GBM. The densities for these ten subjects (dashed),
along with their Karcher mean (solid red) are displayed in Figure 3(a). The Karcher
mean in this case provides a simple summary of the sample of voxel intensity pdfs,
and was computed using the FR Riemannian framework. We do not display the
corresponding MRI slices in this case for brevity (note that there doesn’t exist a
unique MRI slice corresponding to the Karcher mean pdf). Given an estimate of the
Karcher mean, we perform PCA and show the first principal direction of variability
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Fig. 3 (a) Karcher mean (solid red line) of a random sample of ten voxel value pdfs (dashed lines)
extracted from tumor regions of GBM subjects. (b) Principal direction of variability in the sample,
displayed at -2, -1, 0, +1, +2 standard deviations around the mean (red).

in the given sample. This result is provided in Figure 3(b) and reflects the relative
heights of the different modes in the sample of voxel value pdfs.

4.2 Amplitude and Phase in Elastic Functional Data

Automatic Segmentation and Clustering of Electrocardiogram Signals: The
electrocardiogram (ECG) is a cheap and widely-applied diagnostic tool for assess-
ment of various heart diseases including myocardial infarction (MI). Automated al-
gorithms, based on sound mathematical and statistical principles, that can accurately
and efficiently analyze ECG signals are thus useful in monitoring and identifying
the risk or onset of a particular disease. The ECG captures fluctuations in electrical
potential of the heart muscle on the body surface and results in a vector that repre-
sents the magnitude and direction of the electric field generated through the heart
[8]. The ECG represents an example of a highly periodic biomedical signal. The
two main challenges in analyzing such data include (1) automatic segmentation of
cycles called PQRST complexes (PQRST refer to semantic features of each cycle:
the P peak, QRS complex and the T peak) from a long temporal ECG signal, and
(2) automatic registration of cycles to extract amplitude and phase variabilities of
individual cycles. The ECG data used here for demonstrative purposes is a subset of
the PTB Diagnostic ECG Database [5] obtained from Physionet [12].

In [33], the authors solve these two problems using techniques from elastic func-
tional data analysis described in Section 2.2. First, they define an automatic signal
segmentation algorithm based on a sliding window approach. In particular, they
construct a PQRST complex template, based on the amplitude component of a few
manually segmented PQRST complexes, and slide it along the long periodic signal.
The cost function that is then used for segmentation is the phase distance, defined in
Equation 9, between the part of the long signal in the current window and the defined
template. The PQRST cycles are identified as local minima of this cost function.
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Fig. 4 (a) Pictorial description of automatic algorithm for segmentation of long ECG signals.
Bottom: Registration of PQRST complexes to a common template. (b) Given PQRST complexes.
(c) Phase component. (d) Amplitude component. (e) Comparison of average PQRST complex
without (blue) and with (green) registration. Image courtesy of [33].

Figure 4(a) provides a pictorial description of this process. Once the cycles have been
extracted, their amplitude components are found by registering to a new common
template. This result is displayed in the bottom panel of Figure 4. In (b), we show
the segmented PQRST complexes. The extracted phase components are displayed in
(c) with corresponding amplitude components in (d). Finally, in (e), we compare the
amplitude means computed without (blue) and with (green) registration. Note the
enhanced features of the PQRST complex average computed after registration.

In addition to extracting the amplitude and phase components from PQRST
complexes, the authors in [33] use the amplitude components for (1) classification
of subjects as healthy controls or as having MI and (2) localization of the MI as
anterior or inferior. The data they use for this experiment consists of 80 healthy
control ECGs, 28 of which are repeated measures for the same subject, and 80
MI ECGs with no repeated measures. For each subject, they first segment the long
ECG signal into corresponding PQRST complexes and then use the amplitude of
the average PQRST complex for classification using the nearest neighbor procedure.
They report an accuracy of MI classification of 90% by combining information from
different ECG leads (the data contains a total of 15 different ECG signals called
leads per subject). Also, they report a localization accuracy of 92.21%, again based
on combining multiple single lead classifiers.
Assessment of Variability in DT-MRI Fractional Anisotropy Functions in Mul-
tiple Sclerosis:DT-MRI is a neuroimagingmodality that traces the diffusion ofwater
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Fig. 5 (a) Observed FA functions. (b) Amplitude component. (c) Phase component.

molecules in the brain. A DT-MRI scan of a subject’s brain provides a 3 × 3 tensor
matrix, at each voxel in the image, that describes the constraints of local Brownian
motion of water molecules. This information is essential to understanding white
matter in the brain which constitutes areas made up of axons or tracts. Tracts connect
neurons and allow for the transmittance of electric signals from one area of the brain
to another, affecting overall brain function. Because the diffusion of water in tracts
is anisotropic, tracts themselves can be extracted from the information contained in
a DT-MRI, along with other quantities of interest that describe the quality of tract
connection by summarizing its degree of anisotropy.

Here, we focus on Fractional Anisotropy (FA) measurements along tracts,
which provide a voxel-wise summary of the eigenvalues of the diffusion ten-
sors, denoted by λ1, λ2, λ3. At each voxel, FA is given by the scalar quantity

F A =
√

3
2

√
(λ1−λ̄)2+(λ2−λ̄)2+(λ3−λ̄)2

λ2
1+λ

2
2+λ

2
3

, where λ̄ = λ1+λ2+λ3
3 . A larger FA value indi-

cates a large degree of anisotropy. For practitioners, this summary is interpreted as
measuring the quality of connections between neurons connected by the tracts in
a particular region of interest, and has been found to be a useful quantity to study
subjects with various diseases, e.g., multiple sclerosis (MS) [13], Alzheimer’s [39],
etc. In the MS setting, the autoimmune disease causes lesions and damage to tracts
that results in a decrease in FA. Thus, this quantity can be used to distinguish be-
tween healthy controls and subjects with MS, and to predict cognitive and motor
disease outcomes. The data of interest takes a functional form, with the domain of
the functions representing locations along tracts. Determining the voxels that the
tracts pass through in the image is a practical challenge in itself and will be further
discussed in Section 4.3.

The functional FA data we analyze here is available as part of the ’refund’ package
in R [14]. In particular, we study the mean and principal directions of variability in a
sample of 66 subjects withMSwhose FA values were measured at 55 locations along
the right corticospinal tract that contributes to fine motor movements in ipsilateral
limbs. The domain of parameterization for each FA function was normalized to
[0, 1] for convenience. It is important to note that due to differences in the geometry
of different subjects’ white matter, there generally exist both phase and amplitude
variabilities in the FA functional data, as demonstrated next. The rawFA functions for
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Fig. 6 (a) Pointwise mean of the FA functions in Figure 5(a). (b) Karcher mean of the FA functions
after registration in Figure 5(b). (c)-(e) First three principal directions of of amplitude (and transla-
tion) variability of the FA functions, respectively. We display a path of functions sampled at -2 and
+2 (dotted lines), -1 and +1 (dashed lines), and 0 (solid line) standard deviations from the mean.

the 66 subjects are shown in Figure 5(a). The amplitude components of the functions,
after registration to a common template, are displayed in Figure 5(b). Finally, the
warping functions which constitute the phase components are shown in Figure 5(c).
Visual inspection of panel (b) reveals that the number of extreme values in the
FA functions is roughly the same across subjects. The main source of variability
in this case are the heights of the extreme values. The phase components in panel
(c) suggest that the extreme values occur at different parameter values for different
subjects, which is intuitive given natural geometric variability of the tracts across
subjects. These insights are only made possible through the separation of amplitude
and phase by registering all functions to a common template; such patterns are much
more difficult to observe by looking at the observed functions in panel (a).

Figure 6 further highlights the importance of elastic functional data analysis
methods by contrasting averages computed without (panel (a)) and with (panel (b))
registration. While the general patterns in the two means are similar, the amplitude
mean in panel (b) reveals much more local structure through small peaks and valleys.
Finally, to understand patterns of variability in the given sample of FA functions,
we perform PCA on the amplitude components. Since the translation of the func-
tions is also informative in this setting, we include it as an additional feature in the
PCA model (it is appropriately weighted to make the scales of the two components,
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amplitude and translation, comparable). The first three principal directions of ampli-
tude (and translation) variability are visualized in Figure 6(c)-(e). The first direction
predominantly captures variability in translation as well as the initial portion of the
functions, as some functions in the sample initially decrease and others increase. The
second direction captures fine features of the different peaks and valleys of the FA
functions, especially the fourth peak, as well as large amount of variability at the end
of the functions. Finally, the third direction (and subsequent directions not displayed
here) capture bigger differences in the relative heights of peaks and valleys.

4.3 Shapes of Open and Closed Curves

Comparison and Summarization of Planar Shapes of GBM Tumors:We return
to the study of the GBM tumor dataset, as described in Section 4.1. However, instead
of modeling the internal texture of the tumors, we instead model the shapes of tumor
outlines. This allows us to study growth patterns and shape heterogeneity of tumors,
which are features that are complementary to voxel intensity values. Tumor shape
is affected by the location of the tumor in the brain due to constraints posed by the
brain anatomy such as white matter and blood vessels. In [3], the authors suggest
that tumor shape could enhance our understanding of disease prognosis and help in
prediction of therapeutic success. As in Section 4.1, the imaging data is a subset
of The Cancer Imaging Archive, and the tumor shape is obtained through semi-
automated segmentation; some segmented tumors are visualized in Figure 1. The
geometric data object of interest in this case is the red outline of the tumor rather than
the entire MRI slice. In this case study, we consider 63 GBM tumor outlines, which
are represented as planar closed curves. We focus on characterization of tumors
through the visualization of geodesic paths, the Karcher mean shape and shape PCA.
Similar results appear in [3]; the scope of their study is broader and additionally
includes shape clustering, hypothesis testing and survival modeling.

We begin with a visualization of a geodesic path between two tumor shapes in
Figure 7. If the two endpoints of the geodesic path are a single subject’s tumor at
different timepoints, the points along the path can be viewed as an interpolation along
different stages of tumor growth. This, in turn, can help a practitioner retrospectively
understand of how the subject’s tumor has evolved over time without collecting
MRI data at intermediate timepoints. On the other hand, when the two endpoints are
shapes of tumors coming from two different subjects, as in Figure 7, the path can help
formulate a qualitative understanding of how tumor shapes differ in the population.
In this case, the shapes of the tumors seem to differ by how bulbous or skinny their
protrusions are. By viewing more subjects’ tumors in Figure 8, this seems to be a
common discrepancy between the different subjects. The insight that this is a primary
source of variability in GBM tumor shapes is formalized by viewing the principal
directions of variability in the entire dataset; the first four directions are shown in
Figure 9. Notice that the first direction, which captures approximately 41% of the
total variability, describes the types of differences in protrusions described before.
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Fig. 7 Geodesic path between shapes of GBM tumors for two subjects (blue and black endpoints),
sampled uniformly using five interior points along the path.

Fig. 8 Five randomly selected GBM tumor outlines.

(a)

(b)

(c)

(d)

Fig. 9 (a)-(d) First four principal directions of shape variability in the GBM dataset, respectively,
sampled at -3, -2, -1, 0, +1, +2 and +3 standard deviations around the mean shape (red).

The remaining directions describe other shapes of the bulbous features of the tumors.
The second, third and fourth principal directions of variation capture about 33%,
16%, and 10% of the total variability, respectively; essentially all of the variation is
contained in these first four directions. This implies that a low dimensional model,
based on these PCs, could be used for subsequent statistical analyses.
Clustering Shapes of 3D DT-MRI Tracts:As previously mentioned in Section 4.2,
DT-MRI tracts are of interest when studying structural connections between different
regions of the brain. Tractography is the field of study concerned with discerning
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Fig. 10 (a)-(d) Results of hierarchichal shape clustering for four subjects. Top: Tracts colored by
cluster membership. Middle: Image of distance matrix. Bottom: MDS plot of tracts.

tracts from the tensor-based DT-MRIs [37]. Conventional tractography relies on
the principle that water diffuses anisotropically in white matter tracts in a principal
direction that is encoded in the diffusion tensor. This implies that the direction that
the tract is pointing in a voxel will coincide with the eigenvector corresponding to the
maximimum eigenvalue of the diffusion tensor. Consequently, an entire tract can be
traced using information from the observed diffusion tensors associated with voxel
locations. The application described in [31] deals with tracts that connect Broca’s
and Wernicke’s regions of the left hemisphere of the brain; these two regions are
associated with the human language circuit. While two main routes of connection
are widely recognized, there is an ongoing debate on whether the white matter tracts
connecting the two regions can be further broken down into smaller subroutes.

The data in this study contains different numbers of fiber tracts for four subjects.
We identify different routes of connectivity by clustering the shapes of these tracts
using distance-based methods. This was also done in [31], but there the authors used
shape in conjunction with other features of the tracts. To determine if the tracts can
be put in different clusters representing major pathways connecting the regions of
interest, a hierarchical clustering algorithm,with a complete linkage criterion, is used
to cluster the observations for each individual based on the elastic shape distance
defined in Equation 11. The results for all four subjects are shown in Figure 10. The
tracts, represented as 3D open curves, are plotted in the top panel of the figure and
are colored by cluster membership. In the middle panel, we show the pairwise shape
distance matrix as an image, rearranged according to the computed clusters. Note
the nice separation of clusters in this distance matrix. Finally, in the bottom panel,
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we show a plot of the tracts after applying multidimensional scaling (MDS) to the
distance matrices. This 2D scatterplot provides a lower dimensional visualization of
the clustered data. Some of the subjects exhibited tracts that could be separated into
more than two clusters, e.g., Figure 10(b)-(c). The case for more than two clusters
is hard to justify for the subject in Figure 10(a). Based on these results, it appears
that the hypothesis that there are two or three main pathways connecting Broca’s
and Wernicke’s regions in the left hemisphere is plausible for all of the subjects
considered in this case study.

4.4 Shapes of Surfaces

Simulation of Endometrial Tissue Shapes: We define a PCA-based statistical
model for efficient simulation of random endometrial tissue shapes, which can be
used for validation of various image processing algorithms such as multimodal
registration of MRI and transvaginal ultrasound (TVUS). This is an important task
in the context of diagnosis and surgery planning for endometriosis [52, 45], a complex
gynecological disease in which endometrial cells appear outside their usual locations
in the uterine cavity [6]. Endometriosis affects approximately 10% of women in the
reproductive age group and may cause chronic pelvic pain, severe dysmenorrhea,
infertility, rectal bleeding and digestive problems.

In this study [34, 30], we use real data from ten subjects with small endometrial
implants in the pelvic area. The available data are cylindrically parameterized sur-
faces of endometrial tissues, reconstructed from 2D MRI slices. The entire dataset
can be found in Figure 1(b) in [34]. There is a lot of variation in this data, and thus,
parsimonious shape models are very important in this application. Of main interest is
random generation of realistic endometrial tissue shapes as they’d appear in an MRI
scan and a corresponding TVUS image. Unfortunately, endometrial tissue is soft and
undergoes a significant deformation during TVUS imaging due to the transducer’s
pressure. Thus, in addition to generating a random endometrial tissue shape we must
additionally apply a deformation on the surface of the shape that is consistent with
the TVUS imaging protocol.

To achieve the two goals outlined above, we first compute the Karcher mean of
and perform PCA on the ten given endometrial tissue shapes. This allows us to
express the data in terms of the principal coefficients. We model these coefficients
using a simple zero-mean multivariate Gaussian distribution with the covariance
structure informed by the PCA. A major advantage of this shape model is that it
is very easy and computationally efficient to sample from. Figure 11(a) shows four
randomly generated endometrial tissue shapes as they’d appear in an MRI. Then,
to simulate the semi-synthetic deformation needed for the corresponding TVUS-
based endometrial tissue shape, we define a simple diffusion model with different
degrees of deformation on the previously computed Karcher mean; the deformation
is centered at a randomly selected point on the mean. These deformations can then
be transported from the Karcher mean to each of the random samples from our
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(a) (b) (c)

Fig. 11 (a) Randomly sampled shape from the Gaussian model resembling MRI data. (b) Random
sample after additional deformation resembling TVUS data. (c) Deformation applied to the random
sample displayed on a perfect cylinder. Image courtesy of [34].

model using parallel transport [51]. Figure 11(c) displays the deformations applied
to a perfect cylinder. The magnitude of deformation increases from the top panel
to the bottom panel. Finally, the TVUS-based, deformed endometrial tissue shapes
are displayed in (b). The random samples generated using this approach (as well as
their deformed counterparts) naturally resemble the given data. In [34], the authors
provide a thorough validation of their models and a formal assessment by a clinician.
Classification of Attention Deficit Hyperactivty Disorder (ADHD) via Shapes
of Subcortical Structures: Recently, many researchers have become interested in
studying shape changes of brain structures and associating these changeswith various
diseases including Alzheimer’s [50, 22], Parkinson’s [11], autism [16] and ADHD
[28], among others. Statistical analysis of the shapes of such structures plays a central
role in the ability to diagnose and monitor such diseases, as well as to develop novel
treatment strategies. The current standard of practice is to use clinical symptoms,
including various behavioral tests, to detect and quantify abnormalities due to disease
status. Such an approach has clear limitations as the tests are often subjective and
mainly qualitative, relying entirely on a doctor’s assessment and judgment.

As an alternative, our final case study considers classification of ADHD based
on the shapes of four distinct subcortical structures, represented as closed surfaces:
pallidum, caudate, thalamus and putamen; a single example of each structures is
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Fig. 12 Subcortical structures used for classification of ADHD. Image courtesy of [20].

displayed in Figure 12. The surfaces of these subcortical structures were segmented
from T1-weightedMRIs of young adults aged between 18 and 21 who were recruited
from the Detroit Fetal Alcohol and Drug Exposure Cohort [17, 18]. Among the 34
subjects in this dataset, 19 were diagnosed with ADHD and the remaining 15 were
controls. The classifier in this study was constructed in the following way. First, the
training data was used to estimate the Karcher mean in each class. Then, shape PCA
was used to define a Gaussian model on the principal coefficients. The resulting
classifier simply uses the likelihood ratio under these two models to classify test
shapes into control or ADHD classes. This classifier was applied in a leave-one-out
manner to the above-described dataset, i.e., at each iteration a single case was left
out for testing while the rest were used to learn the classification model. The best
classification result obtained using this method was based on the shape of the left
putamen, 94.1%. The shape of the right pallidus yielded a classification accuracy of
76.5%, and the shapes of the left caudate, left thalamus and right thalamus resulted
in a slightly worse classification accuracy of 67.7%. Comprehensive results of this
study are reported in [20], where the approach outlined here was compared to other
classifiers and other shape representations [28].

5 Summary

We consider several biomedical applications of geometric functional data analysis.
We begin by assessing variability in a sample of GBM voxel intensity pdfs to
model tumor appearance. We then shift our focus to the use of elastic functional
data methods for analyzing amplitude and phase components of electrocardiogram
signals and FA functions extracted from DT-MRI. For the GBM tumor data, we
additionally study shape variability of tumor outlines extracted from single MRI
slices, which form planar closed curves. Shapes of white matter tracts in DT-MRI
provide information about connectivity of different brain areas. We cluster particular
sets of tracts to elucidate connection pathways between Broca’s and Wernicke’s
areas, which are associated with the language circuit. Finally, we use shape models
to simulate 3D endometrial tissue shapes, and to define classifiers for ADHD based
on shapes of subcortical structures.
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