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Analysis of shape data: From landmarks to elastic curves
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Abstract

Proliferation of high-resolution imaging data in recent years has led to sub-

stantial improvements in the two popular approaches for analyzing shapes of

data objects based on landmarks and/or continuous curves. We provide an

expository account of elastic shape analysis of parametric planar curves rep-

resenting shapes of two-dimensional (2D) objects by discussing its differences,

and its commonalities, to the landmark-based approach. Particular attention is

accorded to the role of reparameterization of a curve, which in addition to

rotation, scaling and translation, represents an important shape-preserving

transformation of a curve. The transition to the curve-based approach moves

the mathematical setting of shape analysis from finite-dimensional non-

Euclidean spaces to infinite-dimensional ones. We discuss some of the

challenges associated with the infinite-dimensionality of the shape space, and

illustrate the use of geometry-based methods in the computation of intrinsic

statistical summaries and in the definition of statistical models on a 2D imag-

ing dataset consisting of mouse vertebrae. We conclude with an overview of

the current state-of-the-art in the field.
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1 | INTRODUCTION

Shape is a fundamental property of objects. Statistical analysis of data pertaining to shape is predicated on our ability to
mathematically represent shape, and to measure and quantify shape differences. The natural habitat, however, for
mathematical representations of interesting shape data are non-Euclidean spaces. This demands an adaptation of stan-
dard statistical methods on linear spaces, or development of new ones based on explicit geometric considerations of the
shape space.

As an example, consider the problem of characterization of objects present in two-dimensional (2D) images. The
first step is to identify and extract the different aspects of the object within the image. One can consider pixel values on
or around the object of interest, also commonly referred to as texture, or alternatively consider the boundary of the
object of interest. This article is concerned only with the latter, although the former has been, and is, an active field of
research (Humeau-Heurtier, 2019; Materka, 2004).
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Depending on the resolution, the boundary of the object can be represented in (at least) two ways: a set of distinct
2D points on the object which represent certain special features of the object, or as a continuous curve on the plane.
Then, the shape of the object under a certain representation can be intuitively understood as the geometric information
of the object that is independent of variations due to translations, scaling and rotations. The point-set representation
generally leads to landmark-based methods, whereas the representation using continuous curves naturally leads to elas-
tic shape analysis methods. Both approaches lead to the understanding of a shape of an object as the associated equiva-
lence class of objects that are related to the original object through a set of shape-preserving transformations.

Landmark-based methods in statistical shape analysis have been extensively studied over the years. The book Statis-
tical shape analysis: With applications in R by Dryden and Mardia (2016) provides an excellent introduction and over-
view of the state-of-the-art on this topic. Curve representations of shape data, while studied by the mathematical and
computer vision communities for several years (Joshi, Klassen, Srivastava, & Jermyn, 2007; Klassen & Srivastava, 2006;
Klassen, Srivastava, Mio, & Joshi, 2004; Younes, 1998; Younes, Michor, Shah, Mumford, & Lincei, 2008; Zahn &
Roskies, 1972), have only recently gained traction within the statistics community, mainly coinciding with the profu-
sion of imaging data from biomedical applications. With this in mind, borrowing ideas and concepts liberally from the
recently published book Functional and shape data analysis (Srivastava & Klassen, 2016), our aim in this overview arti-
cle is to provide an expository account of analysis of 2D shape objects by describing the differences and commonalities
between the two approaches (landmark-based and elastic curve-based), both from conceptual and operational
perspectives.1

We adopt an informal style of exposition whereby the focus is on conveying the main ideas with minimal technicali-
ties. We consider four key aspects of statistical shape analysis of data objects, presented in a natural order of progres-
sion: (a) mathematical representation, (b) choice of metric and shape distance, (c) statistical summaries under the
chosen metric, and (d) statistical models. Geometrical considerations play a vital role in the exposition, in addition to
the definition of the shape of an object as an equivalence class characterized by a class of transformations of the object
that represent nuisance variation.

To concretize ideas, we consider a dataset of 2D images of the second thoracic (T2) mouse vertebrae, and demon-
strate the features and utility of the curve-based approach on each of the four aspects. This dataset contains a total of
76 vertebrae divided into three groups: large (30 mice), small (23 mice), and control (30 mice). A detailed description of
this dataset (section 1.4.1), along with a thorough statistical analysis under the landmark-based representation, are
given in Dryden and Mardia (2016). More recently, this data was also analyzed under different representations in
Cheng, Dryden, and Huang (2016), Strait, Kurtek, Bartha, and MacEachern (2017) and Cho, Asiaee, and Kurtek (2019).
The entire dataset is available in R as part of the shapes package.2

1.1 | Related work

There has been a tremendous amount of shape analysis research in multiple disciplines including statistics, applied
mathematics, computer science and different domain sciences, especially biology. The main differences between the
methods usually boil down to the choice of representation and metric for shape comparison and statistical modeling.
Here, we provide a brief look at some of the most prominent approaches to shape analysis in current literature.

The field of shape analysis can be traced back to the pioneering work of D'Arcy Thompson, a biologist/mathemati-
cian, and his book titled On growth and form (Thompson, 1917). In his approach, Thompson deformed objects of inter-
est to make them appear more similar. Recently, deformation-based approaches have become extremely popular. The
work in this area began with Grenander's deformable templates (Grenander & Miller, 1998; Joshi, Miller, & Grenander,
1997). This idea was later used to develop the general framework of large deformation diffeomorphic metric mapping
(LDDMM) (Beg, Miller, Trouvé, & Younes, 2005), which can be used to study shapes of point sets (Glaunès, Vaillant, &
Miller, 2004; Joshi & Miller, 2000), curves (Glaunès, Qiu, Miller, & Younes, 2008) and surfaces (Durrleman, Pennec,
Trouvé, & Ayache, 2009; Vaillant & Glaunès, 2005). Recently, these methods have been extended to use varifolds as the
shape representation (Charon & Truové, 2013). Deformable templates and LDDMM have proven to be extremely useful
in computational anatomy for quantifying variability of anatomical shapes. Other popular 2D and three-dimensional
(3D) shape representations include level sets (Malladi, Sethian, & Vemuri, 1996), medial axes (Bouix, Pruessner, Col-
lins, & Siddiqi, 2001; Gorczowski et al., 2010; Siddiqi & Pizer, 2008), or point clouds (Almhdie, Léger, Deriche, & Lédée,
2007). Another recent approach to shape analysis has its roots in the field of topological data analysis wherein shapes of
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objects are represented using a topological summary statistic called the smooth Euler characteristic transform
(Crawford, Monod, Chen, Mukherjee, & Rabadán, 2019).

However, the two most widely utilized approaches in statistical shape analysis represent 2D objects via landmarks
(Bookstein, 1992; Dryden & Mardia, 2016; Small, 1996) or curves (Klassen et al., 2004; Srivastava & Klassen, 2016;
Srivastava, Klassen, Joshi, & Jermyn, 2011; Zahn & Roskies, 1972). Section 2.1 in Dryden and Mardia (2016) contains
an interesting discussion on the historical context within which the field of statistical shape analysis based on landmark
representations evolved, and contains many other relevant references. We also note that the elastic shape analysis
framework for curves has been recently extended to the case of surfaces; see the recent book of Jermyn, Kurtek, Laga,
and Srivastava (2017) for details.

1.2 | Applications of landmark- and curve-based shape analysis

Before proceeding with the mathematical and statistical description of the landmark- and curve-based frameworks
for shape analysis, we briefly outline the many possible applications of these methods. One of the scientific areas
where statistical shape analysis has played a prominent role is biology. Landmark-based methods especially have
reached deep into various biological applications (Bookstein, 1984, 1996; Dryden & Mardia, 1993; Mardia & Dryden,
1989; O'Higgins & Dryden, 1992). More recently, curve-based methods have seen their own success in this setting;
see Cho et al. (2019) for a detailed overview. Another promising area of applied research is in medical imaging.
With recent advances in medical imaging acquisition technology, large datasets are becoming common. An impor-
tant goal in medical imaging is to assess the morphology of anatomical structures for the purposes of disease detec-
tion or monitoring. While most research focuses on 3D shape analysis in this setting (Kurtek et al., 2011; Samir,
Kurtek, Srivastava, & Canis, 2014), curve-based approaches have been used to model shapes of diffusion tensor mag-
netic resonance imaging fiber tracts (Kurtek, Srivastava, Klassen, & Ding, 2012), to assess variability in manual seg-
mentation of medical images (Kurtek et al., 2013), and to model survival based on glioblastoma multiforme tumor
shapes (Bharath, Kurtek, Rao, & Baladandayuthapani, 2018). Other popular applications of statistical shape analysis
include biometrics (Kaziska & Srivastava, 2006; Samir, Srivastava, Daoudi, & Klassen, 2009; Srivastava, Samir,
Joshi, & Daoudi, 2009), military (Joshi & Srivastava, 2009), activity recognition and modeling (Su, Kurtek, Klassen, &
Srivastava, 2014), and anthropology (O'Higgins & Dryden, 1992), among others. We display a few applications of sta-
tistical shape analysis in Figure 1.

(a) Laga et al. [2014] (b) Srivastava et al. [2009] (c) O'Higgins and Dryden [1992]

(d) Bharath et al. [2018] (e) Kurtek et al. [2012]

(g) Kaziska and Srivastava [2006]

(f) Joshi and Srivastava [2009]

FIGURE 1 Applications of

statistical shape analysis include

(a) leaf shape classification, (b) facial

recognition, (c) anthropology,

(d) tumor shape modeling,

(e) clustering of diffusion tensor

magnetic resonance imaging fibers,

(f) military defense, and (g) gait

recognition
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2 | MATHEMATICAL REPRESENTATION

Kendall (1984) states that the shape of an object is a geometric property that remains after scale, rotation and transla-
tion variabilities have been filtered out. This definition can be extended to the curve-based representation by requiring
that variability due to reparametrization of the curve be removed as well, as it is shape-preserving. We first briefly
review the shape representation for the landmark-based approach. Figure 2 shows four representations of a shape data
object corresponding to a mouse vertebra. We will mainly be concerned with the landmark- and curve-based represen-
tations displayed in panels (b) and (c), respectively; we briefly comment on the curve-with-landmarks representation,
shown in panel (d), in the final section of the article.

2.1 | Landmark-based approach

A set of N points in two dimensions on an object that establishes correspondence between objects are known as land-
marks. They are typically classified as scientific, if they have been chosen by experts as being representative of a scien-
tific property of the object (e.g., anatomical landmarks on organisms), mathematical, if they are points representing
certain geometric or mathematical properties of the object (e.g., curvature, extrema), or pseudo, if they are just sampled
along the boundary or outline of the object.

Landmarks in Cartesian coordinates on an object are arranged into a configuration matrix X of dimension N × 2,
and the corresponding set of configuration matrices associated with a sample of data objects is then referred to as the
configuration space. Figure 2b shows six mathematical landmarks, labeled using different colors, extracted from the
image in Figure 2a. The shape of a configuration matrix X is given by the set

X½ �≔ σXO+ 1NxT0 : O ∈ SO 2ð Þ, x0 ∈ R2, σ>0
� �

,

where SO(2) is the special orthogonal group {O ∈ R2 × 2 : OTO = OOT = I2, det(O) = +1} of rotation matrices and 1N is
the vector of N ones. The shape of X, denoted as [X], is the set of all possible similarity transformations of X, which
rotate (using the matrix O), scale (using the positive scalar σ), and translate (using the two-vector x0) X. Similarity trans-
forms of X do not alter its shape, as understood using Kendall's definition. Note that the shape [X] is an entire class of
configurations that are related by similarity transforms.

The set of similarity transformations3 (σ, O, x0) ∈ R+ × SO(2) × R2 can be endowed with a group structure, which
offers a nice algebraic characterization of the shape of X. Thus, [X] is an equivalence class of configuration matrices of
X, known as the orbit of X under the action of the above-mentioned group: a configuration matrix Y belongs to [X] if it
can be transformed to X using one or a combination of similarity transforms. The set of orbits {[X] : X ∈ RN × 2} forms
the corresponding quotient space.

2.2 | Curve-based approach

In some applications, for example, the tumor shapes in Figure 1d, it may be costly or difficult to choose suitable land-
marks for shape analysis. Instead of assigning mathematical or pseudo landmarks along the boundary of the object, a
natural alternative would be to consider the entire outline while choosing a representation. While discretization

(a) (b) (c) (d)

FIGURE 2 Four different

representations of a mouse

vertebra: (a) grayscale image,

(b) color-labeled landmarks,

(c) curve, and (d) curve with

color-labeled landmarks
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becomes necessary at the implementation stage, the underlying data objects are continuous curves and should thus be
modeled as such; as a result, in contrast to landmark-based approaches, discretization in curve-based shape analysis is
only performed at the end. Furthermore, a curve-based shape representation allows one to properly define
reparameterization invariance as seen in the following paragraph. Figure 2c shows the outline of the mouse vertebra
extracted from the image in Figure 2a. Mathematically, the boundary of the mouse vertebra can be represented as a
parameterized closed planar curve β : 1 !R2 , where 1 is the unit circle on the plane. The image of t↦ β(t) captures
the boundary of the object.

As with the landmark approach, the definition of the shape of β requires accounting for a set of nuisance transfor-
mations. In addition to similarity transformations, another important source of unwanted variability is the arbitrariness
of the parameterization of β. That is, the domain 1 of the curve β is unobserved and not part of the data. Since any
smooth one-to-one mapping of 1 to itself, preserving clockwise or anti-clockwise order, will not change the image of
t↦ β(t), the set of all such transformations also ascribe nuisance variability to the observed β. Another way of inter-
preting reparameterization variability is by relating the transformation to the speed of traversal along the domain 1 ,
and noting that it has no bearing on the shape of the observed curve. This is illustrated in Figure 3. We start with a
curve β, which is sampled according to arc-length (red points with uniform sampling). To reparameterize β, we use a
special function γ displayed in the figure using angles corresponding to coordinates on the unit circle.4 The composition
of β and γ results in a new nonlinear sampling of points on the curve (red points). Evidently, the class of all transforma-
tions of 1 preserving the shape of β is a large function class. But, it can be equipped with a group structure, and
modeled as the set of one-to-one, smooth functions with a smooth inverse, which do not alter the order of traversal
along 1. Thus, we consider Γ≔ γ : 1 ! 1 : γ is an orientation preserving diffeomorphism

� �
, as the group of transforma-

tions that represent reparametrizations of a closed planar curve β.
From the above discussion, we see that the shape of a closed curve β : 1 !R2 is given by the equivalence class

β½ �≔ σO β∘γð Þ+ x0 :O ∈ SO 2ð Þ, x0 ∈ R2, σ>0, γ ∈ Γ
� �

:

The group corresponding to the above set of transformations is {(O, x0, σ, γ) ∈ SO(2) × R2 × R+ × Γ}. The shape [β], as
with the landmark approach, is the orbit under the action of this group. Figure 4a displays four mouse vertebra curves
that have different translations, rotations and scales, but the same shape. Figure 4b provides a pictorial description of

FIGURE 3 A mouse vertebra

curve β reparameterized using a

diffeomorphism of 1, γ
(represented as an angle [0, 2π)),

resulting in β ∘ γ. The sampling of

points according to the curve's

parameterization is shown in red

(a) (b)

FIGURE 4 (a) Different similarity transformations

applied to the same mouse vertebra. Note that all have

the same exact shape. (b) Pictorial representation of an

orbit of a curve
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an orbit of a mouse vertebra. The three displayed curves correspond to three different points along the orbit and have
the same exact shape.
Once a representation has been chosen, the shape of each object is a suitable equivalence class of transforms of the
object. Data analysis works at the level of individual objects and not necessarily the equivalence classes. This issue will
be dealt with next.

3 | GEOMETRY OF SHAPE SPACE AND METRIC

Geometric information about the shape of an object necessitates explicit considerations of the geometry of the space in
which it resides, characterized by the important choice of a metric to measure shape differences. Broadly, the two most
common approaches are extrinsic and intrinsic. The latter restricts attention wholly to the shape space, endows it with a
Riemannian structure, and proceeds to compute quantities of interest using a Riemannian distance. The former embeds
the shape space into a larger space, which is more amenable for calculation of desired quantities, and projects them
back to the shape space. Our focus will be on intrinsic approaches to shape analysis. The main tool for statistical analy-
sis is the metric, and the focus hence will mostly be on its choice; the corresponding geometry will only offer a conve-
nient backdrop for the results.

3.1 | Landmark-based approach

Recall that the orbit [X] is characterized by all possible scalings, translations and rotations of a configuration matrix X.
The program is to remove scaling and translation variability of X by suitable transformations, such that the orbit [X]
then contains rotated versions of X only.5

In two dimensions, the geometry of the shape space can be nicely described with complex arithmetic by identifying
R2 with the complex plane ℂ. Given a configuration X ∈ RN × 2, we can identify a landmark xj (row j of X) in R2 with a
point on the complex plane ℂ as zj = xj, 1 + ixj,2 where i=

ffiffiffiffiffiffiffi
−1

p
. A configuration X can then be mapped to a point

z∈ℂN in the N-dimensional complex space.
Translation and scaling variability can be removed by translating the center of z to the origin, and rescaling z to

have unit norm. This can be achieved by applying the transform zj↦ zj−N−1PN
j=1

zj

 !
followed by z↦ z/|z|, where |�|

here is the standard Euclidean norm. The resulting set of z following the transforms is referred to as the preshape space,
since rotational variability is yet to be removed. Formally, the preshape space is

CN≔ z∈ℂN :
1
N

XN
j=1

zj =0, zj j=1

( )
,

which is the unit sphere in the N-dimensional complex space. We move from the preshape space to the shape space by
re-defining the orbit of z only with respect to rotations. Indeed, each rotation in two dimensions can be parameterized
by a single angle, and hence SO 2ð Þ= 1 . Thus, we have that z½ �= eiθz : θ ∈ 1

� �
. The set of orbits {[z]} is referred to as

the shape space, denoted as SN
2 . We see that SN

2 can be identified with the complex projective space ℂPN− 1.
Thus, for landmarks in two dimensions, the shape space SN

2 can be endowed with a nice geometry upon choosing a
Riemannian metric. One convenient way to define a distance on the shape space is to choose a metric on the preshape
space that is invariant to rotations.6 A natural candidate for a distance on CN is the shortest great circle distance

ρ z1,z2ð Þ≔ arccos j z*1z2 j , z1,z2 ∈ CN ,

where z* denotes the complex conjugate of z, and j z j = ffiffiffiffiffiffiffi
z*z

p
its modulus. On the preshape sphere CN , the distance ρ

can be interpreted as the smallest angle between complex vectors z1 and z2. It is easy to see that ρ is invariant to simul-
taneous rotations eiθ of z1 and z2 with respect to any θ ∈ 1 . Using the invariance of ρ to rotations, we can define the
Riemannian shape distance between [z1] and [z2] as
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ρs z1½ �, z2½ �ð Þ≔ minθ∈1 ρ eiθz1,z2
� �

:

3.2 | Curve-based approach

While nuisance variability due to translation, scaling and rotation can be taken care of in a manner similar to the land-
mark case, reparameterization variability brings about a new set of challenges. Previous approaches removed this
source of variability by normalizing parameterizations to arc-length (Klassen et al., 2004; Zahn & Roskies, 1972). How-
ever, this fixes the correspondence of points across curves and results in suboptimal matching of their geometric fea-
tures. In contrast, the elastic shape analysis approach that is our focus in this article, allows for computation of
“optimal” parameterizations, resulting in more natural deformations between and statistics of shapes. In the notation
introduced earlier, a reparameterization of the curve β is given by composition with a smooth invertible γ ∈Γ.

Recall that the orbit [β] of β represents its shape. Before performing a stage-wise removal of nuisance variaiblity,
and defining the preshape space, we note a major obstacle in following the program used for landmarks. Analogous to
the standard Euclidean metric in the landmark setting, consider the standard 2 distance defined as

jβ1−β2j jj2 =
Ð 2π
0 β1 tj j−β2 tj jj j2dt

� �1=2
, where |�| denotes the Euclidean norm in R2. It is easy to see that

β1−β2k k2 6¼ β1∘γ−β2∘γk k2

for general γ ∈ Γ, and hence this metric is not invariant to reparameterization.
How can we overcome this fundamental challenge? First, we introduce an alternative representation of a parame-

terized curve. Let the square-root velocity function (SRVF) of a curve β be given by q=
_βffiffiffiffi
j _βj

p , where again |�| is the

Euclidean norm in R2 and _β is the derivative of β. It is easy to see that this representation is translation invariant as its
definition involves first derivatives only. Furthermore, if β is absolutely continuous then its SRVF is square-integrable,

that is, an element of the space 2 1,R2
� �2012

(Robinson, 2012) (henceforth denoted by 2 for brevity). Finally, the

inverse mapping from an SRVF q to the corresponding curve β is simply given by β tð Þ= β 0ð Þ+ Ð t0q sð Þ j q sð Þ j ds for all t.
In fact, the SRVF of β is unique up to translations, and vice versa. The natural metric on the SRVF space is then given
by the 2 metric.

The above discussion begs the question: Why did we introduce the SRVF? It turns out that the 2 distance
on the space of SRVFs is invariant to reparameterizations. First, one can easily check that the SRVF of a rep-
arameterized curve β ∘ γ is given by q∘γð Þ ffiffiffi

_γ
p

. Then, one can check that for two SRVFs q1,q2 ∈ 2 , and a
reparameterization γ ∈ Γ, the following holds true: q1−q2k k2 = q1∘γð Þ ffiffiffi

_γ
p

− q2∘γð Þ ffiffiffi
_γ

pk k2, making the 2 metric invariant
under reparameterizations. Another compelling reason for introducing the SRVF representation for shape analysis
is that the 22011 metric on the space of SRVFs corresponds to a specific instance of an elastic metric on the original
space of absolutely continuous curves (Srivastava et al., 2011). This elastic metric measures the amount of stretching
and bending needed to deform one shape into another, providing a natural interpretation (Mio, Srivastava, &
Joshi, 2007).

As mentioned earlier, the SRVF q is automatically translation invariant. To remove scaling, we consider curves of
unit length only; an equivalent condition on SRVFs is that their 2 norm is equal to one. The set of all such SRVFs is
the unit Hilbert sphere in 2 denoted by S∞ (Lang, 2001); it is the preshape space denoted by

C= q : 1 !R2 : qk k22 = 1
� �

:7

This preshape space is analogous to the unit sphere CN for the case of N landmarks in m = 2 dimensions. Rotation and
reparameterization variabilities now need to be dealt with. Note that the SRVF of a rotated curve Oβ, where O ∈ SO(2),
is simply Oq. Thus, the orbit of q is
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q½ �= O q∘γð Þ
ffiffiffi
_γ

p
:O ∈ SO 2ð Þ,γ ∈ Γ

n o
;

this orbit contains all possible rotations and reparameterizations of the SRVF q and allows us to unify these different
elements of the preshape space as a single data object, resulting in the shape space of interest S= q½ � : q ∈ Cf g.

As with the landmark shape space SN
2 , we induce a distance on S through a Riemannian distance on the preshape

space C invariant to simultaneous rotations and reparameterizations. Let

ρ q1,q2ð Þ ≔ arccos q1,q2h ih ið Þ ≔ arccos
ð2π
0
hq1 tð Þ,q2 tð Þidt

	 


be the distance between q1 and q2 on C, where h�, �i is the standard inner product in R2. Accordingly, ρ represents the
angle (length of shortest arc) between the two points on the unit sphere S∞ = C. This shortest arc is given by the param-
eterized curve

α τð Þ= 1
sin νð Þ sin ν 1−τð Þð Þq1 + sin ντð Þq2ð Þ, τ ∈ 0,1½ �, ð1Þ

where ν = ρ(q1, q2). Note that the distance ρ is invariant to rotations and reparameterizations, as discussed earlier. As a
consequence, as with the landmark case, the induced distance on the shape space S is then the shortest arc connecting
the equivalence classes of the two SRVFs:

ρs q1½ �, q2½ �ð Þ=min O,γð Þ∈SO 2ð Þ×Γ arccos q1,O q2∘γð Þ
ffiffiffi
_γ

pD ED E� �
: ð2Þ

A key point to note here is that, owing to the group structure and invariance of ρ to rotations and reparameterizations,
computation of ρs involves optimizing only over elements of the orbit [q2] of q2.

If the minimizers of Equation (2) are given by O* and γ*, we compute q*2 =O* q2∘γ*ð Þ
ffiffiffiffiffi
_γ*

p
∈ q2½ � , and construct the

corresponding (geodesic) path of minimal shape deformation from q1 to q*2 using Equation (1) as
α* τð Þ= 1

sin νð Þ sin ν 1−τð Þð Þq1 + sin ντð Þq*2
� �

for τ ∈ [0, 1], where ν = ρs([q1], [q2]) as defined in Equation (2); this path
allows us to efficiently visualize deformations between two shapes, and provides a qualitative meaning for the dis-
tance ρs.

3.3 | Registration of two shapes

An important consideration in the curve-based approach is the issue of registration or establishing correspondence
between points on the observed curves. In the landmark setting, correspondence is automatically available by virtue of
the labelings of the landmarks. Such a correspondence between two curves β1 and β2, or their SRVFs q1 and q2, can be
established in the following manner. Since the qi, i = 1, 2 share a common domain 1 , values of q1 and q2 at a point
s ∈ 1 can be compared. As a consequence, establishing correspondence between q1 and q2, or registering q1 to q2
(or vice versa), can be formulated as determining an element γ* ∈ Γ such that

γ* ≔ argminγ∈Γ arccosðhhq1, q2∘γð Þ
ffiffiffi
_γ

p
iiÞ

� �
=argminγ∈Γ

����q1− jq2∘γj jj
ffiffiffi
_γ

p ����
����

����
2
: ð3Þ

Comparing to Equation (2), we see that the optimal γ* ∈ Γ corresponds to the one at which the minimum preshape dis-
tance ρ is attained.

We comment briefly now on how optimization in Equation (2) is carried out. The minimizer O* ∈ SO(2) is com-
puted as follows. Consider a discretization of qi, i = 1, 2 obtained by sampling qi at a fixed number of points, resulting
in vectors qi, i = 1, 2. Let A=q1q

T
2 , and consider its singular value decomposition (SVD) A = USVT. The optimal rota-

tion O* ∈ SO(2) then is O* = UVT if the determinant of A is positive. Otherwise, one needs to modify V by changing
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the sign of its last column before computing O*. The minimizer γ* ∈ Γ is computed using the dynamic programming
algorithm or a gradient descent approach; we omit the details of these algorithms here and refer the interested readers
to Chapters 4 and 5 of Srivastava and Klassen (2016) or the PhD thesis of Robinson (2012).

Figure 5 shows two examples of pairwise comparisons of mouse vertebrae shapes. In panel (a), we display shape
1 (corresponding to the blue shape along the deformation path) sampled according to arc-length; panel (b) shows shape
2 also sampled according to arc-length. Panel (c) shows the same shape 2 optimally registered to shape 1 (corresponding
to the red shape along the deformation path); note the nonlinear sampling of points along this shape. Finally, panel
(d) shows the path of minimal deformation between the two shapes, discretized using seven points, and reports the
corresponding shape distance (length of this path). Furthermore, Figure 6 shows the benefits of elastic shape analysis as
compared to shape analysis under fixed arc-length parameterization. The elastic deformation preserves more geometric
features of the shapes along the path; this is especially evident near the baseline of the “tail” portion of the vertebrae. The
differences here are rather small due to shape homogeneity of the mouse vertebrae in this dataset. For more drastic exam-
ples, we refer the readers to Chapters 5 and 6 in Srivastava and Klassen (2016).

4 | STATISTICAL SUMMARIES OF SHAPES

The differences, at least operationally, between the landmark- and curve-based approaches are blurred when comput-
ing statistical summaries. This is because discretization of a curve is required for computational purposes. However, the
two approaches share the complications induced by the non-Euclidean geometry of the shape space when computing a
sample mean, median and principal component analysis (PCA). We shall not review the landmark-based approach sep-
arately owing to the significant overlap in the operational details.

Example 1

(d)

(a) (b) (c)

(a) (b) (c)

ρs = 0 .2545

Example 2

(d) ρs = 0 .3517

FIGURE 5 Two examples of shape distances and

deformations for mouse vertebrae. (a) Shape 1. (b) Shape 2 prior

to optimal reparameterization. (c) Shape 2 after optimal

reparameterization. The colored points correspond to the same

parameter value across the three shapes (they are not

landmarks). (d) Path of minimal shape deformation and the

shape distance
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Using the shape metric and the geometry of the corresponding shape space, descriptive statistical analysis is typi-
cally carried out in the following manner: (a) use the notion of a Karcher mean of a metric space, a generalization of
the usual sample mean, to compute a mean shape, (b) consider a convenient linearization of the shape space around
the Karcher mean shape to obtain local coordinates for the shape space, and (c) use standard multivariate techniques to
carry out PCA. The approaches are mainly distinguished by the choice of the distance, and the manner in which the
linearization is achieved. Intrinsic methods that avoid the linearization step have also been proposed (Fletcher, Lu,
Pizer, & Joshi, 2004; Zhang & Fletcher, 2013, 2014), but will not be discussed here.

4.1 | Computing mean shape

The sample Karcher mean of a collection of points x1, …, xn from a metric space X,dð Þ is defined as the minimizer of
the sum of squared distances to xi:

μ̂=argminx∈X

Xn
i=1

d x, xið Þ2: ð4Þ

This generalizes the definition of the sample mean in Euclidean space as the minimizer of the functional
y↦1=n

Pn
i=1 y−xij j2 . Evidently, the definition is applicable to the metric shape spaces for landmark-based and curve-

based approaches for specific choices of X and distance d. If only distances (and not their squares) are used in the defi-
nition, then the minimizer is a sample median (Fletcher, Venkatasubramanian, & Joshi, 2009). We will focus on the
Karcher mean.

Elements of the shape space S are equivalence classes or orbits. One way to understand the orbit representing a
Karcher mean shape, although not always in an equivalent sense, is as the shape of the Karcher mean. In other words,
if μ̂ is the sample mean computed using Equation (4) on the preshape space C based on the shape distance ρs, then we
can regard its orbit μ̂½ � as the mean shape. Furthermore, the average of squared shape distances from each sample shape
to the shape mean μ̂ gives the so-called Karcher variance, an overall measure of spread in the sample. From this per-
spective, owing to the definition of the shape distance ρs in Equation (2), we can view computation of the mean as an
optimization problem over the preshape space C. That is, given curves β1, …, βn, their SRVFs q1, …, qn are points on the
preshape space C . We can compute the Karcher mean μ̂ with respect to the shape distance ρs as the minimizer of the
functional C 3 q↦

Pn
i=1ρs q½ �, qi½ �ð Þ2. This amounts to computing

μ̂=argminq∈C
Xn
i=1

min Oi,γi½ �∈SO 2½ �×Γ arccosðhhq,Oi qi∘γi½ �
ffiffiffiffi
γi
:

q
iiÞ

� 2
:

Elastic Deformation

Nonelastic Deformation

FIGURE 6 Comparison of

elastic and nonelastic (based on arc-

length parameterizations) shape

deformations between two mouse

vertebrae
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The mean shape is then considered to be the orbit μ̂½ � of μ̂ . From our earlier discussion on registration between
curves, we note that computing the mean using the expression above entails registering each qi to the eventual Karcher
mean μ̂. This will be profitably used when carrying out PCA on the shape space.

Computation of the Karcher mean is carried out using gradient-based algorithms (Le, 2001; Pennec, 2006); a
detailed algorithm for computing this shape statistic under the SRVF representation is given in Kurtek et al. (2013).
Note that the final solution obtained via these algorithms may only be a local minimum. The algorithms iterate
between three steps: (a) project all shapes to the tangent space at the current estimate of the mean, (b) compute the gra-
dient of the appropriate cost function, and (c) update the current estimate of the mean on the preshape space C . The
first and third steps require geometric tools called the inverse-exponential and exponential maps (reviewed in the next
subsection), which allow one to project points from a manifold to a linear tangent space and vice versa.

4.2 | PCA on shape space

Exploration of variability in a sample of shape data can be carried out by choosing a suitable set of coordinates in the
vicinity of the Karcher mean μ̂ . The Riemannian framework provides a convenient formalism to choose local coordi-
nates. In particular, the Euclidean coordinates of the tangent space T μ̂ Cð Þ at μ̂ provide a convenient linearization. If the
variability in the set of qi, i = 1, …, n is not too large, then the tangent space coordinates at μ̂ work quite well in
practice.

Using the tangent space T μ̂ Cð Þ we can access the tangent space of the mean shape μ̂½ � on the shape space S. The tan-
gent space at μ̂ on the preshape space can be decomposed as T μ̂ Cð Þ=T μ̂ μ̂½ �ð Þ�N μ̂ Cð Þ, where N μ̂ Cð Þ is referred to as the
perpendicular or horizontal space consisting of functions in C that are orthogonal to the orbit μ̂½ �. The space N μ̂ Cð Þ can
be identified with the tangent space at the Karcher mean shape μ̂½ � in S, denoted as T μ̂½ � Sð Þ. Abusing notation, we shall
denote this as T μ̂ Sð Þ.

The program for performing PCA on shapes of SRVFs q1, …, qn is as follows:

1. Compute Karcher mean shape μ̂.
2. Project qi, i = 1, …, n onto the tangent space T μ̂ Sð Þ to obtain vectors v1, …, vn.
3. Carry out PCA on T μ̂ Sð Þ with v1, …, vn and then project results back onto S.

We notice that two projections are required: in step 2 from the representation space to the tangent space at the mean
T μ̂ Sð Þ (these projections are also called lifts), and in step 3 from T μ̂ Sð Þ back onto the shape space S . The expression in
Equation (1) for the shortest path between two points, by virtue of its definition, provides the two projections in the
form of the exponential map expμ̂ :T μ̂ Sð Þ!S , and its inverse exp−1

μ̂ . Fortunately, these are available analytically for
the preshape space C, since it is a sphere in 2 , through which we link it to the corresponding quantities on the space
S.

The SRVFs qi are projected onto the linear tangent space T μ̂ Sð Þ as vi =exp−1
μ̂ q*i
� �

, i=1,…,n ; here, q*i denotes the
optimally rotated and reparameterized SRVF qi with respect to the mean μ̂ . Denote by vi the discretized vi at a finite
number of points M. Let K2M≔1= n−1ð ÞPn

i=1viv
T
i denote the 2M× 2M sample covariance matrix of the vectorized vi.

The matrix K2M is the discretized version of the covariance kernel K : [0, 2π]× [0, 2π]!R given by
K ω,τð Þ= 1= n−1ð Þð ÞPn

i=1 vi ωð Þ,vi τð Þh i. Notice that we do not subtract the mean from vi (and hence vi) since the Karcher
mean has been identified with the origin of the tangent space T μ̂ Sð Þ where this covariance is computed.

Standard multivariate techniques can be used now to perform PCA in the tangent space T μ̂ Sð Þ using the spectral
decomposition K2M = UΣUT. The orthonormal matrix of eigenvectors of K2M, U, contains the principal components,
which we refer to as the principal directions of variability in the observed shape data; the columns of U form an ortho-
normal PCA basis for the (discretized) tangent space T μ̂ Sð Þ . The diagonal matrix Σ contains the eigenvalues of K2M,
usually ordered from largest to smallest, which correspond to the PC variances.

Typically, the number of observations is smaller than the dimensionality of each tangent vector: n < 2M. Thus, the
sample covariance matrix is singular and there are at most n − 1 positive eigenvalues in the matrix Σ. In other words,
the sample size n controls the degree of variability in the data. The submatrix formed by the first r columns of U, Ur,
spans the principal subspace of the observed shape data. One can reexpress the data using coordinates of this subspace
via the principal coefficients in Rr computed as ci =UT

r vi, i=1,…,n2018 . One can then use these principal coefficients
for further modeling, for example, PC regression (Bharath et al., 2018).
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One can also visualize the principal directions of variation in the given shape data. This is done by following shape
paths in the directions given by columns of the matrix U as follows. For a single direction given by Uj, we compute
expμ̂ t

ffiffiffiffiffiffi
Σjj

p
Uj

� �
, where expμ̂ denotes the exponential map at μ̂ , Σjj is the jth eigenvalue of the covariance matrix

corresponding to the direction Uj, and the constant t is varied between some values −k and k. Intuitively, we are follow-
ing the direction Uj in the tangent space in units of standard deviation, and then projecting the results to the shape
space for visualization using the exponential map.

Figure 7 displays the mean mouse vertebra shape as well as the three dominant directions of variability in the data.
The patterns of deformation encoded in the PCs reflect natural variability in the “tail” and “head” portions of the verte-
brae shapes.

5 | PROBABILISTIC SHAPE MODELS

There are numerous probability models for landmark shape data, usually based on distributions on the preshape
space CN 2016

that are invariant to rotations (e.g., complex Bingham, complex Watson, complex Angular
Central Gaussian; see Chapter 10 in Dryden & Mardia, 2016 for details). Such distributions assign equal mass to
any rotated version of the original configuration, and hence subsequent inference is unaffected by rotational variability.
Another class of models on the landmark preshape space are offset-normal models, wherein starting with a
normal distribution on the configuration X, nuisance parameters such as rotations, scale and translations are
integrated out with respect to uniform distributions on the parameters (see Chapter 11 of Dryden & Mardia, 2016 for
details).

The infinite-dimensional nature of the preshape space C in the curve setting, and the infinite-dimensional nature of
the space of reparameterization functions Γ, bring about some serious obstacles in defining such models: a distribution
on C that is invariant to all possible reparameterizations does not exist; a uniform distribution on the
reparameterization group Γ does not exist. Moreover, supports of probability distributions on function spaces do not
generally behave like ones on finite-dimensional spaces, and exhibit some pathological properties (e.g., Gaussian distri-
butions on 2 assign probability 1 or 0 to subspaces).

When sample variability is not very large, a class of models based on transforming a distribution on the tangent
space of the sample Karcher mean on the preshape space, known as tangent space models, have been considered in the
landmark setting (Chapter 9 in Dryden & Mardia, 2016). Extending such models to the curve setting again is compli-
cated owing to measure-theoretic issues associated with transforming a distribution on T μ̂ Cð Þ under the exponential
map expμ̂

2017 (Bardelli & Mennucci, 2017).

5.1 | PCA-based and Bayesian models

A viable option in sidestepping the issues associated with the infinite-dimensionality of the shape space is to consider
finite-dimensional models on the discretized curves following PCA on the shape space. Such an approach has been used
in Kurtek et al. (2012) to generate random shapes in the following manner. First, estimate the Karcher mean and
Karcher covariance, and perform PCA in the tangent space at the Karcher mean, in the same manner as described in

FIGURE 7 Left: Mean shape

of the sample of 76 mouse

vertebrae. Right: Three principal

directions of shape variability, with

the mean shape in red, and the

three shapes to its right and left

representing shapes that are one,

two and three standard deviations

from the mean
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the preceding section. Then, reduce dimension from 2M to some k < n − 1. Consider a k-dimensional mean zero Gauss-
ian distribution in the tangent space, which is then wrapped onto the shape space using an appropriate mapping, for
example, the exponential map or stereographic projection. Under the notation used in the preceding section, in order to
generate a random sample from this model, one computes vrand =

Pk
i=1zi

ffiffiffiffiffiffi
Σii

p
Ui , where zi �iid N 0,1ð Þ. One can then

rearrange the elements of vrand to form a tangent vector vrand∈R2×M. We visualize the random shape associated with
vrand after projecting it to the shape space S . Figure 8 displays six random mouse vertebrae shapes generated in such a
manner. Note that all look structurally consistent due to the PCA-based nature of the model.
The model is easy to interpret, and generates random shapes based on dominant directions of variability in the given
dataset. The zi can follow any distribution of choice, including some heavy-tailed ones, and it hence becomes possible
to generate a wide variety of random shapes, which can be viewed as suitable deformations of the sample mean shape
(see also Chapter 9 of Srivastava & Klassen, 2016). Indeed, if out-of-sample prediction is of interest, then one needs to
proceed with care when using this model.

Another attractive modeling option is a fully Bayesian specification using suitable prior distributions on the nui-
sance parameters representing rotation, scale, translation and reparameterization. Formally, consider a planar curve β
with nuisance parameters (σ, O, x0, γ) in R+ × SO(2) × R2 × Γ. Let Pμ be the distribution of a stochastic process 1 3
t↦η tð Þ∈R2 with mean function μ. Then, based on a sample of observations, β1, …, βn, we can define the Bayesian
model

βi j σi, Oi, x0i, γi, μð Þ�iid Pμ;

Oi � π1, x0i � π2, σi � π3, γi � π4, μ� π5,

where π1 is a distribution on SO(2) (e.g., Haar measure), π2 is any bivariate distribution on R2, π3 is a distribution on
the positive real line, π4 is a distribution on the reparameterization group Γ, and π5 is another stochastic process from
1 to R2 (e.g., Gaussian process). The set Γ is infinite-dimensional, and some suitable distributions on it have been the
focus of recent work in Bharath and Kurtek (2019), Kurtek (2017), and Lu, Herbei, and Kurtek (2017). In principle,
Bayesian inference on μ can be carried out using Markov chain Monte Carlo (MCMC) or other methods, although this
is far from being straightforward since the dimensions of the parameters are different with some being very high. Also
desirable would be to have a joint prior specification on the nuisance parameters that models the interplay
between them.

5.2 | Nonparametric models

In the landmark setting, theoretical results on uniqueness of the population mean shape, consistency of the sample
mean shape, and central limit theorems for the sample mean shape have been derived and studied extensively; see
Bhattacharya and Bhattacharya (2012) for an excellent survey of results. Asymptotic normality of the sample mean
shape can be used to develop nonparametric tests for mean shape, two-sample tests comparing populations of shapes,
and other asymptotic tests. Formal asymptotic results of this nature are presently unavailable in the curve setting, and
is an area of current research.

6 | RECENT ADVANCES

There have been two major recent advances that have built upon the two frameworks described in detail in this article.
The first advance unifies the landmark-based and SRVF representations of shape as pictorially shown in Figure 2d. In
particular, in many applications such as medicine or biology, one is interested in studying continuous shapes of objects

FIGURE 8 Six randomly

generated mouse vertebrae shapes

using a principal component

analysis-based Gaussian model
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with additional landmark annotations. The landmark-based and elastic approaches on their own are insufficient for this
purpose as they would ignore parts of the given information (either the outline or the landmarks). Strait et al. (2017)
define a new landmark-constrained representation of shape, also based on the SRVF, that provides the benefits of both
frameworks: curves are analyzed elastically while preserving landmark locations. Furthermore, they adapt all of the sta-
tistical tools for elastic shape analysis presented in this article to the landmark-constrained case. A similar approach to
this problem is taken in Bauer, Eslitzbichler, and Grasmair (2017). However, they develop a matching functional that
considers landmarks as soft constraints, that is, the landmark matching is not exact.

A closely related problem is one of automatically detecting landmarks under a formal statistical model. While in
most applications the landmarks are annotated manually, this process can be tedious and expensive when the sample
size is large. Strait, Chkrebtii, and Kurtek (2019) define a Bayesian statistical model to detect the number and location
of landmarks on general shapes. While most work in the area of landmark detection solves this problem algorithmi-
cally, a model-based approach provides many advantages including the ability to formally assess uncertainty. The
model of Strait et al. has two main components: (a) a likelihood that measures the “goodness” of the landmark set
through linear shape reconstructions, and (b) prior distributions which allow the user to incorporate knowledge about
the number of landmarks to select and where to place them. Inference is then performed using a reversible jump
MCMC algorithm.

The SRVF representation provides a convenient setting for elastic shape analysis. However, it does not allow shape
analysis under the entire family of elastic metrics; the simplicity of the SRVF framework comes at the cost of having to
fix the weights for the stretching and bending terms in the elastic metric. Unfortunately, there is no guarantee that the
SRVF-based weights should perform well across all applications. Rather, the choice of metric should be tied to the
application of interest. Recently, there have been multiple attempts at defining computationally efficient procedures for
shape analysis under the general family of elastic metrics. Bauer, Bruveris, Charon, and Moller-Andersen (2019)
approximate shape distances and deformation paths under first order elastic metrics, among others, via the varifold rep-
resentation. Younes (2018) generalizes the SRVF framework based on the metamorphosis viewpoint (Miller & Younes,
2001). Finally, Kurtek and Needham (2018) directly generalize the SRVF transform to accommodate the entire family
of first order elastic metrics. However, much work remains to be done to define statistical procedures within these
frameworks or to be able to learn optimal metric choices depending on the application and problem of interest.

7 | ADDITIONAL RESOURCES

7.1 | Available software

While this article shies away from details on computational implementation of the described landmark- and curve-
based approaches to shape analysis, we point the interested readers to freely available R and Matlab software. First,
many of the landmark-based shape analysis tasks can be achieved via the shapes package8 in R. Similarly, shape analy-
sis of curves, under the SRVF representation, is implemented in the fdasrvf package9 in R as well as in Matlab.10

7.2 | Riemannian geometry books

As evident in this article, statistical shape analysis requires prerequisite knowledge in differential and Riemannian
geometry. There are many excellent texts available on these topics. We suggest the books An introduction to differentia-
ble manifolds and Riemannian geometry by Boothby (1975) or Riemannian geometry by do Carmo (1992).

7.3 | Tutorial on elastic functional and shape data analysis

Finally, we would like to direct the interested readers to materials from a recent CBMS conference on Elastic Func-
tional and Shape Data Analysis (EFSDA),11 which was hosted at the Mathematical Biosciences Institute in the summer
of 2018. These materials contain (a) a brief, nontechnical introduction to the topic, (b) the aforementioned Matlab code
for elastic shape analysis under the SRVF representation, (c) ten lectures (slides and videos) delivered primarily by Prof.
Anuj Srivastava, and (d) a list of significant references.
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ENDNOTES
1 Part of the motivation to focus on these two shape representations over others is the conceptual simplicity of the underlying mathematical
frameworks in terms of requisite knowledge in Riemannian geometry.

2 https://cran.r-project.org/web/packages/shapes/index.html
3 Technically, the structure is not that of a product group since OX + x0 6¼ O(X + x0), and σ(X + x0) 6¼ (σX + x0), and notation should indi-
cate a semi-direct product group R2 � �

(R+ × SO(2)). But, we shall eschew such technicalities in this article.
4 Technically, one should imagine this function taking values directly on the unit circle.
5 Rather than considering orbits under the group action of scaling and translation as formulated earlier, we simply remove these sources of
variability via normalization.

6 In the case when the metric on the preshape space is invariant, it descends to the shape space, which is a quotient space of the preshape
space.

7 Technically, this preshape space is for all curves, open and closed; an additional closure condition is needed to restrict to closed
curves only.

8 https://cran.r-project.org/web/packages/shapes/index.html
9 https://cran.r-project.org/web/packages/fdasrvf/index.html
10 https://www.asc.ohio-state.edu/kurtek.1/cbms.html
11 https://www.asc.ohio-state.edu/kurtek.1/cbms.html
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