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Motivation

Important to assess sensitivity of posterior inference to:

• Prior distribution;

• Likelihood;

• Data.

Two observations:

• ‘Distance’-based measures are commonly used with inadequate

considerations of the geometry of the space of models;

• Perturbations and sensitivity measures are usually developed independent

of the inferential methodology.
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Objective

Unify the perturbation mechanisms for prior, likelihood and data with inference

under a Riemannian framework to develop sensitivity measures which are

geometrically calibrated.



Why bother with the geometry?

• The space of probability densities is a nonlinear manifold.

• Divergence measures are not true distances(positive definiteness,

symmetry and triangle inequality).

• Geodesic distances provide geometrically calibrated measures of disparity

between densities. Under the Fisher-Rao metric they are also bounded.

• Geometry might lead to statistical insights.



Fisher–Rao metric

• Banach manifold of probability densities on R:

P =
{
p : R→ R+ ∪ {0} :

∫
R
p(x)dx = 1

}
.

• For a point p in P define the tangent space as:

Tp(P) =
{
δp : R→ R :

∫
R
δp(x)p(x)dx = 0

}
.

• The nonparametric Fisher-Rao metric then is:

〈〈δp1, δp2〉〉p =

∫
R
δp1(x)δp2(x)

1
p(x)

dx .

The metric is invariant to reparameterizations (Ćencov 1982).
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Connection to Fisher Information matrix

• Consider the parametric family F = {f (x , θ)|θ ∈ Θ}.

• The tangent vectors at f (x , θ) are ∂
∂θ

f (x , θ).

• Then, the norm on F is induced by the Fisher-Rao Riemannian metric∫
R

(
∂

∂θ
f (x , θ)

)2 1
f (x , θ)

dx =

∫
R

(
∂

∂θ
log(f (x , θ))

)2

f (x , θ)dx

= Eθ

[
∂

∂θ
log(f (x , θ))

]2

,



Fisher–Rao metric

Issue: difficult to use the metric directly as it changes from point to point on

the manifold P.

Solution: find a different representation, which simplifies the computations.

Different choices are available:

log representation; CDF representation; positive square-root.
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The Square-Root Representation (SRT): Bhattacharya (1943)

• Define the map φ : P 7→ Ψ where the space Ψ is the space containing the

positive square-root of all possible density functions.

• Using this mapping, define the square-root transform of probability density

functions as φ(p) = ψ = +p1/2. The inverse mapping is simply

φ−1(ψ) = p = ψ2.



The Square-Root Representation (SRT): Bhattacharya (1943)

Fact 1: The space of all SRT representations of probability density functions is

the positive orthant of the unit L2 sphere:

Ψ =
{
ψ : R→ R+ ∪ {0};

∫
R
|ψ(x)|2dx = 1

}
.

Fact 2: Ψ is a Hilbert manifold with the unique global chart which is the

identify map.

Fact 3: The nonparametric Fisher-Rao metric equips Ψ with a Riemannian

structure and reduces to the standard L2 metric.



Fisher–Rao metric under SRT



Geometry of unit Hilbert sphere is well-known

• Tangent space at a point ψ ∈ Ψ: Tψ(Ψ) =
{
δψ : 〈δψ, ψ〉 = 0}.

• The L2 Riemannian metric is: 〈δψ1, δψ2〉 =
∫
R δψ1(x)δψ2(x)dx .

• Geodesic distance:

dFR(p1, p2) = θ = cos−1(〈ψ1, ψ2〉).

• 0 ≤ dFR(p1, p2) ≤ π
2 .

• The geodesic path between ψ1 and ψ2, indexed by τ ∈ [0, 1], is

η(τ) = (sin(θ))−1[sin(θ − τθ)ψ1 + sin(τθ)ψ2]



Geometry of unit Hilbert sphere is well-known

• Exponential map exp : Tψ1(Ψ) 7→ Ψ, to map tangent vectors back to

sphere:

expψ1(δψ) = cos(‖δψ‖)ψ1 + sin(‖δψ‖)δψ(‖δψ‖)−1.

• Inverse Exponential map exp−1
ψ1

: Ψ 7→ Tψ1(Ψ):

exp−1
ψ1 (ψ2) = [θ(sin(θ))−1 (ψ2 − cos(θ)ψ1)].

These are tremendously useful!



Example: Normal and Skew-normal

p1 ∼ N(0, 1); p2SN(5).

Fisher-Rao Geodesic Straight Line Midpoint
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• Linear interpolation midpoint is shown in blue.

• Fisher-Rao geodesic midpoint is shown in green.



Example: Bivariate normals

p1 ∼ N(µ1,Σ1) and p2 ∼ N(µ2,Σ2) where

µ1 =

.5
.2
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dFR(p1, p2) = 0.7157; KL(p1, p2) = 1.2522; KL(p2, p1) = 1.3653.



GEOMETRIC ε- PERTURBATION CLASS



Geometric ε-perturbation of prior

• Let G = {g1, . . . , gn} denote a finite class of contaminants.

• We construct a set of tangent vectors vg1 , . . . , vgn ∈ T
π

1/2
0

(Ψ) using the

inverse exponential map as vgi = exp−1
π

1/2
0

(g
1/2
i ), i = 1, . . . , n.

Definition

For a class of densities G = {g1, . . . , gn}, the geometric ε-contamination class

corresponding to the baseline prior π0 is defined as

Γ =
{

[exp
π

1/2
0

(εvgi )]2; 0 ≤ ε ≤ 1, gi ∈ G, i = 1, . . . , n
}
. (1)



Geometric ε-perturbation of prior



Two fundamental properties

Theorem

• Any perturbation of the baseline prior should not have an effect on the

sampling distribution.

• Given two perturbations of the baseline prior, the Riemannian metric on

the space of joint densities show be independent of the sampling

distribution.

Theorem

• The effects of simultaneous perturbations of the prior and likelihood on

the joint density should be separable.

• Two separate perturbations of the prior and likelihood should be

orthogonal to each other on the space of joint densities.



GLOBAL SENSITIVITY MEASURES



Geodesic distance as sensitivity measure

• We assess global sensitivity to perturbations of the prior or likelihood using

the Fisher-Rao geodesic distance between the baseline posterior and the

perturbed posterior

• Upper bound of π/2 privdes a natural scale.

• Intrinsic distance captures the geometry of the space of densities.

• One can additionally assess sensitivity of functionalsof the posterior by

computing them at the nearest and farthest perturbed posteriors.



Simple example

• Data: 50 data points simulated from the baseline model.

• Baseline model:

xi |θ
i.i.d

f =∼ N(θ, 1);

θ ∼ πo = N(0, 1).

• Prior perturbation class: SN(α),−5 ≤ α ≤ 5.
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Simple example

dFR KL12 KL21 Posterior mean
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Last columns is posterior mean for varying values of α and ε = 0.5

(baseline=blue, geometric contamination=green, linear contamination=red).



Directional Data example

• Data: 76 directions of turtle movement after applying a treatment.

• Baseline model:

xi |θ
i.i.d∼ f = vM(θ, κ̂), κ̂ = 1.14;

θ ∼ πo = vM(0, 0.01).

Goal: assess global sensitivity to changing κ̂. We will do this by varying the

concentration parameter in the likelihood from 0.01 to 10.

Turtle Data dFR
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Example: Generalized Mixed Effects Model

• Data: Binary response–presence or absence of bacteria;

predictors–treatement (placebo, drug, drug+), week of test.

• Baseline model:

Yij ∼ Bernoulli(pij); logit(pij) = µ+
3∑

k=1

xk
ij β

k + Vi ;

µ ∼ N(0, 100); βk i.i.d.∼ N(0, 100);

Vi
i.i.d.∼ N(0, σ2); τ =

1
σ2 ∼ Γ(0.01, 0.01),

• Goal: assess global sensitivity of marginal posteriors of µ and β to the
following choices of priors on σ2:

• Half-normal with variance 100 on σ;

• Half-Cauchy with scale 100 on σ;

• Uniform(0,100) on σ;

• Γ(1, 2) on τ ;

• Γ(1, 2) on τ .



Example: Generalized Mixed Effects Model

intercept drug drug+ week
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Fixed Effect
Model

(1) (2) (3) (4) (5)

intercept 0.1054 0.0864 0.0982 0.0740 0.6716

drug 0.0716 0.0499 0.0590 0.0435 0.3835

drug+ 0.0666 0.0580 0.0683 0.0445 0.3432

week 0.0524 0.0572 0.0630 0.0311 0.3670



LOCAL SENSITIVITY MEASURES



Local perturbation measures based on ε-perturbation

• Use directional derivatives to derive local sensitivity measures under the

geometric ε-perturbation class.

• Utilize the underlying geometry of the space to develop sensitivity

measures for posterior functionals.

• Second-order analysis on the geodesic distance itself can be used obtain

finer measures.



Toy example

• Data: 50 data points simulated from the baseline model.

• Baseline model:

xi |θ
i.i.d

f =∼ N(θ, 1); θ ∼ πo = N(0, 1).

• Prior perturbation class: tν , ν = 3, 4, . . . , 100.

• Candidate prior for Bayes factor: π1 = N(0, 5).
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Local analysis for Turtle data

• Data: 76 directions of turtle movement after applying a treatment.

• Baseline model:

xi |θ
i.i.d∼ f = vM(θ, κ̂), κ̂ = 1.14; θ ∼ π0 = vM(0, 0.01).

• Prior perturbations: wrapped Laplace with skewness parameter

0.2 ≤ η ≤ 5, and concentration parameter 0.2 ≤ λ ≤ 10.

• η < 1 is skewed anti-clockwise; and, η > 1 is skewed clockwise; η = 1 is

symmetric.

Bayes Factor Posterior Mean Geodesic distance
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Detecting Influential Observations



Influential Observations

• If p0 is the baseline posterior obtained with all observations, denote pk to

be posterior obtained having deleted the kth observation.

• The influence measure for the kth observation then is

I (k) = dFR(p0, pk).

• Issue: posterior may not be available in closed form and numerical

computation of the marginal likelihood may not be possible.

• Solution: Estimate distance using Monte-Carlo based on MCMC samples

or importance sampling. This estimate is consistent.
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Example: Linear regression

• Data: response–natural log of survival time; predictors–blood clotting

score, prognostic index, enzyme test, liver test, age, gender (binary),

moderate alcohol use (binary), heavy alcohol use (binary); n=54.

• Baseline model:

y |θ,X ∼ f = N(Xθ, σ2I54);

θ ∼ π = N(0, 1000I9).

• Easy to evaluate baseline and case-deletion posterior. But dFR is a

high-dimensional intergral.

• If {θi} is a sample from the baseline posterior, then

Î (k) = d̂FR(p0, pk) = cos−1

[
1
N

N∑
i=1

√
pk(θi |y ,X )

p0(θi |y ,X )

]
.



Example: Linear regression

Î Cook’s Distance Peng–Dey (1995)
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Points to ponder over

• There appears to be value in incorporating geometric information into the

robustness assessment.

• Several measures in literature might perform better and might even e easy

to implement. But, the objective of our work is to unify the robustness

assessment endeavour under a geometric framework.

• Our claim is that the measures provided are ‘geometrically calibrated’ with

a natural scale.

• The framework is really easy to implement in practice!
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Future and Current work (plenty!)

• Develop good estimators for FR distance when posteriors are unavailable

analytically.

• Geometric Variational Bayes—we have some preliminary results which

appear promising. The nonparametric manifold should make a seamless

transition to the nonparametric Bayesian framework. (Nonparamteric

Invariant prior mimicing the Jeffreys prior).

• Investigate posterior consistency in topological neighbourhoods induced by

the FR metric.

• . . . . . .



If you can’t convince them, confuse them.

–Harry Truman


