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IN THIS TALK..

Tree: acyclic graph with a ‘root’ which can be embedded on a plane.

• A simple model for binary trees using Poisson process;

• Extend to general classes of large trees based on the Continuum Random Tree;

• Goodness-of-fit tests;

• Application to detecting brain tumor heterogeneity from images (Time permitting).
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MOTIVATION: MODEL FOR BINARY TREES

• Consider a non-homogeneous Poisson process with rate λ(t) = t .

• Let t1, t2, . . . , be inter-event times.
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MOTIVATION: MODEL FOR BINARY TREES

With n inter-event times, a binary tree τ(n) with n leaves or terminal nodes, 2n vertices

and 2n − 1 edges is constructed.

PROPOSITION

From the properties of the Poisson process with rate t, τ(n) can be given the density

f (τ(n)) =

n−1∏
i=1

1
2i − 1

−1
1

2n−1
se−s2/2, s =

2n−1∑
i=1

ti .

• f (·) is exchangeable with respect to the branch lengths.

• f (·)is independent of the “shape" of the tree.

• f (·) is ‘consistent’: removal of a leaf from τ(n) results in a tree a with density

f (τ(n − 1)).
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TOTAL PATH LENGTH

PROPOSITION

Suppose τ(k) is a binary tree with k leaves and branch lengths x1, . . . , x2k−1

generated from the non-homogeneous Poisson model. Then the total path length∑2k−1
i=1 xi follows a Gamma distribution with shape k and scale 2.



GOF TEST FOR BINARY TREES: ONE-SAMPLE

Suppose τ (n) = (τ(n1), . . . , τ(np)) is an independent sample of binary trees from πτ .

THEOREM

Consider the critical function

φ(n, α) =


1 if

p∑
i=1

si > χ1−α,2
∑p

i=1 ni
;

0 otherwise,

where si is the sum of the branch lengths of τ(ni ) and χα,b denotes the αth percentile

of a Chi-square distribution with b degrees of freedom. For the hypotheses H0 : πτ = f

against H1 : πτ 6= f , where f is the density from the non-homogeneous Poisson model,

EH0φ(n, α) = α.



GOF TEST FOR BINARY TREES: TWO-SAMPLE

Suppose τ (n) = (τ(n1), . . . , τ(np)) and η(m) = (η(m1), . . . , η(mq)) are independent

samples of binary trees from πτ and πη respectively.

THEOREM

Let rj denote the sum of the branch lengths of η(mj ), and without loss of generality

assume that
∑p

i=1 si >
∑q

j=1 rj . Then, the critical function

ψ(n,m, α) =


1 if

∑p
i=1 si∑q
j=1 rj

>

(∑p
i=1 ni∑q
j=1 mj

)
F1−α,2

∑p
i=1 ni ,2

∑q
j=1 mj

;

0 otherwise,

where Fα,a,b is the αth percentile of an F distribution with a and b degrees of freedom,

for testing H0 : πτ = πη = f , is such that EH0ψ(n,m, α) = α.



NON-BINARY TREES

• Can the model and tests for binary trees be extended to other types of trees?

Yes, in an asymptotic sense for ‘large’ trees with some modifications.
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MOTIVATION

“ Given a sequence of discrete combinatorial random structures of size n, does there

exists a continuous structure representing their n→∞ limit? If so, then for many

questions about the size-n object one can obtain the n→∞ limit by simply asking the

same question of the limit structure. This is the weak convergence paradigm. "

– David Aldous.

For random trees, the continuous structure is termed the Continuum Random Tree

(CRT).



CONTINUUM RANDOM TREE (CRT)

As n→∞,
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(http://www.normalesup.org/ kortchem/english.html)



WHAT IS THE CRT?

• It can thought of as the closure of the union of binary trees ∪nτ(n).

• From a stochastic process perspective, its ‘finite-dimensional distributions’ are the

the binary trees studied earlier!

It is realized as:

• the weak limit, as vertices grow without bound, of Galton–Watson process

conditioned on total progeny;

• an object constructed from the dense set of local minima of a standard Brownian

excursion process.
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General tree models with the CRT



REPRESENTATION OF TREE

• We will use a more intuitive representation of a tree τn with n vertices and n − 1

edges:

τn = (V(τn), E(τn)),

where V(τn) = (root, v1, . . . , vn−1) is the vertex-set and E(τn) = (e1, . . . , en−1) is

the edge-set.

• In other words, τn is a point in Tn × Rn−1
+ where Tn is the set of all combinatorial

trees with n vertices.



CONDITIONED GALTON-WATSON TREE MODELS

• Suppose ξ is non-negative integer-valued r.v. with distribution (πk : k ≥ 0).

• Construct a tree τ recursively starting with root and giving each node a number of

children that is an independent copy of ξ. This induces a distribution on τ :

P(τ = t) =
∏

v∈V(t)
πo(v,t),

where o(v , t) is the out-degree or the number of children of vertex v in tree t .

• Conditioned Galton-Watson (CGW) trees are family trees of Galton-processes

conditioned on total progeny. The distribution of a CGW tree τn conditioned on n

vertices is then

P(τn = t) ∝
∏

v∈V(t)
πo(v,t) on {t : cardinality of V(t) = n}.
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CONDITIONED GALTON-WATSON TREE MODELS

• π is referred to as the offspring distribution.

• CGW represent a broad class of trees which can serve as probability models.

1 Plane trees (ordered trees): CGW trees with offspring distribution given by a Geometric

distribution with success probability 1/2, and σ2 = 2;

2 Binary trees: CGW trees with vertices containing 0,1 or 2 children with a Binomial

distribution with 2 trials and success probability 1/2, and σ2 = 1/2;

3 Strict binary trees: CGW trees with vertices containing either 0 or 2 children with equal

probability 1/2, and σ2 = 1;

4 Unary-binary trees: CGW trees with vertices containing 0, 1 or 2 children each with

probability 1/3, and σ2 = 2/3;

5 m-ary trees: CGW trees with vertices containing 0, 1, . . . ,m for m > 3 children with

distribution given by a Binomial with m trials and success probability 1/m, and

σ2 = m−1
m .



DISTRIBUTION OF CRT: LCA TREES

For a CGW tree τn = (V(τn), E(τn)), consider the Least Common Ancestor (LCA)

subtree spanned by a randomly chosen subset B of the leaves, including the root.
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DISTRIBUTION OF CRT: LCA SUBTREES (ALDOUS

1993)

For a CGW tree τn = (V(τn), E(τn)), suppose |B| is k < n and denote the LCA tree

spanned by B as LCA(τn,B). Then

As n→∞, for a fixed k, LCA(τn,B) “converges weakly" to a binary tree, L(k),

obtained via the non-homogeneous Poisson process model.

• L(k) can be viewed as “finite-dimensional projection" of CRT.

• Key point: Distribution of CRT is completely specified by distribution of

{L(k), k ≥ 1}.



DISTRIBUTION OF CRT: DYCK PATH

REPRESENTATION

For a CGW tree with n vertices , define a continuous function Hn : [0, 2n]→ R≥0 such

that

Hn(s) = d(root, v),

where v is the vertex obtained during the depth-first walk such that the sum of the

edges traversed till v is s.

H(x)

H(y)

γ(x)
γ(y)

e1

e2

e1

e1

e1+e2

+e2τ
2L(τ)0 e1 e1+2e2



ALDOUS’ REMARKABLE RESULT

THEOREM

Let τn be a CGW tree with offspring distribution with mean 1 and variance σ2 ∈ (0,∞).

Let Hn(k), 0 ≤ k ≤ 2n be the Dyck path associated with τn. Then, as n→∞,

{
1
√

n
Hn([2nt]), 0 ≤ t ≤ 1

}
⇒
{

2
σ

Bex
t : 0 ≤ t ≤ 1

}

where Bex is the standard Brownian excursion.



ALDOUS’ EVEN MORE REMARKABLE RESULT

THEOREM

The Brownian excursion which arises as the limit of the normalized Dyck path of a

conditioned Galton-Watson tree is the “Dyck path" of the CRT.



DISTANCE FROM ROOT OF RANDOMLY CHOSEN

VERTEX

PROPOSITION

Let U be uniform on [0, 1]. Consider the functional Bex (U). For a fixed σ2, the class of

distributions induced through U 7→ 2
σ

Bex (U) characterises the law of 2
σ

Bex , with
2
σ

Bex (U) following a Rayleigh distribution with scale 1/σ.

PROPOSITION

On an ordered conditioned Galton–Watson tree τn with offspring variance σ2, suppose

v is a vertex chosen according to a uniform distribution on V(τn). Then, the random

variable

n−1/2d(root, v) d→ W ,

as n→∞, where W is a Rayleigh distributed random variable with scale 1/σ.
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GOF TESTS FOR CGW TREES

LCA-based tests:

• For each tree in a sample, choose a subset of leaves at random, and construct

LCA trees—each LCA tree will be a strict binary tree;

• From a non-homogeneous Poisson process with rate λ(t) = σ2t , obtain a

parametric class of densities seen earlier for binary trees;

• With a consistent estimator for σ2, the χ2 and F GoF tests for binary trees are

valid, as the number of vertices in each tree grow without bound.

Dyck path-based tests:

• For each tree in a sample, choose a vertex at random, and record its normalized

distance from the root;

• Consider a σ2-parameterized class of Rayleigh densities, and construct a

consistent estimator of σ2;

• Noting that if X is Rayleigh distributed with scale 1/b, then X 2 is Chi-square

distributed with 2 degrees of freedom scaled by 1/b2, we get similar GoF tests.
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PERFORMANCE OF LCA-BASED TEST

One-sample

Distribution
n = 10 n = 100 n = 1000

χ2 perm χ2 perm χ2 perm

Geo(0.5) 0.09 0.15 0.05 0.08 0.03 0.09

Bin(0.5) 0.13 0.08 0.04 0.03 0.01 0.01

Bin(0.35) 0.10 0.16 0.12 0.07 0.06 0.08

GW-Bin(2,0.5) 0.78 0.91 0.91 0.97 0.99 1.00

Phylo.bd 0.81 0.83 0.89 0.91 0.98 0.94

Phylo.coal 0.26 0.37 0.14 0.21 0.11 0.08



Application: Detecting tumor heterogeneity with MRI
Joint work with collaborators at M.D. Anderson Cancer Center, Houston.



TUMOUR HETEROGENEITY

• Variety of genetic, cellular and molecular mutations occur during the course of

tumour development or during the course of a treatment.

• Classification of tumours using clustering of pixel intensities is popular.

• Typically histograms are compared with few parameters.

Our approach: Capture heterogeneity through variations in pixel intensities via

hierarchical relationships between groups of pixels.
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DATASET

• Images of 82 patients with histologically confirmed GBM and molecular data from

The Cancer Genome Atlas (TCGA) database

(https://www.cancerimagingarchive.net/).

• T1-post and T2-FLAIR images were registered spatially followed by intensity bias

correction using Medical Image Processing Analysis and Visualization software (v

6.0).13.

• The tumor region was segmented semi-automatically in 3D using the Medical

Image Interaction Toolkit (MITK.org) with in-plane resolution of 1mm× 1mm.

• T1 and T2 intensities from the segmented regions were grouped with

agglomerative hierarchical clustering to obtain dendrograms of image intensities.
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DENDROGRAMS FROM HIERARCHICAL CLUSTERING

These dendrograms are ultrametric trees, and do not correspond to CGW trees. In

fact, they can be generated by a coalescent process used in phylogenetics (recall poor

power against phylo.coal).

However, there is a surprising connection: if the leaves of an ultrametric binary tree,

τ(n) with n leaves, arising from a hierarchical clustering method are exchangeable in

the sense that the distribution of the the leaves is invariant to permutation, then the

LCA-trees converge in distribution, as n→∞, to the family L(k) of subtrees which

characterise the CRT. (Ph.D. dissertation of Chris Haulk [2012])
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TWO-SAMPLE TEST TO DETECT HETEROGENEITY

• Using the survival times, we created two groups of patients: those with survival

times of utmost 12 months and those exceeding 12 months.

• The 12-month cut-off corresponded to a certain genetic classification— this was

based on recommendations by neuroscientists.

• Differences in groups was detected by LCA-based test at 1% significance level.

• Naive Bayes classifier with the likelihood from LCA trees, provided 69%

classification accuracy.



Details available in a paper on Arxiv: Statistical Tests for Large Tree-structured Data.

“If you can’t convince them, confuse them."

—Harry S. Truman.
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