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Whole-tumour data objects from MR images

Data objects reside in non-Euclidean spaces with non-trivial geometries:
I Trees live on stratified spaces;
I Densities and tumour shapes (as curve) live on infinite-dimensional

manifolds.



In this talk. . .

I I will provide an overview of the work based on the three
representations, with little technical details.

I I will use a standard imaging dataset to explain ideas, and on which
the methodologies were implemented.

I Focus will be on analysis of two sets of MR images pertaining to two
patient groups:

I Formal hypothesis test with trees;

I Geometry-based clustering and PCA with densities and shapes.



The TCGA Dataset for Glioblastoma Multiforme (GBM)

I GBM is a morphologically heterogenous form of malignant brain
cancer.

I Median survival time is about 12 months.

I Images of 82 patients with histologically confirmed GBM and
molecular data from The Cancer Genome Atlas (TCGA) database
(https://www.cancerimagingarchive.net/).

I T1-post and T2-FLAIR images were registered spatially.

I The tumor region (slice with max surface area) was segmented with
in-plane resolution of 1mm× 1mm.
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TREES FROM TUMOUR IMAGES

K. Bharath, D. Dey et al. Statistical Tests for Large Tree-structured Data. Journal of the America Statistical
Association.(2017), 112, 1733-1743.



Binary trees from images

I Intra-tumor heterogeneity as ’clustering tendency’ of pixels.
I Representation of groups of groups of groups of...... pixels: recursive

partitioning of the set of pixels.

Leaves: Pixels
Internal nodes: clusters of pixels
Edge lengths: distance between clusters of pixels



Dataset: High variation in branch lengths

Long surviving (≈ 60 months) Short surviving (≈ 5 months)



Issues with statistical models

I Inference should not depend too much on choice of metrics and
representations.

I Distributions should be unaffected by labelling scheme
(Exchangeability).

I Hierarchical information between vertices should be preserved.
I Should be easy to simulate rich classes of binary trees.



A simple distribution on binary trees
I Consider a non-homogeneous Poisson process with rate λ(t) = t.

I Let t1, t2, . . . , be inter-event times.
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A simple distribution on binary trees

With n inter-event times, a binary tree τ(n) with n leaves or terminal
nodes, 2n vertices and 2n − 1 edges is constructed.

Proposition
From the properties of the Poisson process with rate t, τ(n) can be given
the density

f (τ(n)) =

[
n−1∏
i=1

1
2i − 1

]−1

︸ ︷︷ ︸
topological info

1
2

n−1
se−s

2/2︸ ︷︷ ︸
branch length info

, s =
2n−1∑
i=1

ti .

I f (·) is exchangeable with respect to the branch lengths.

I Removal of a leaf from τ(n) results in a tree a with density
f (τ(n − 1)).

I s = Sum of branch lengths characterizes f , and captures overall
distance between pixel clusters (and is Gamma distributed).



A simple distribution on binary trees

With n inter-event times, a binary tree τ(n) with n leaves or terminal
nodes, 2n vertices and 2n − 1 edges is constructed.

Proposition
From the properties of the Poisson process with rate t, τ(n) can be given
the density

f (τ(n)) =

[
n−1∏
i=1

1
2i − 1

]−1

︸ ︷︷ ︸
topological info

1
2

n−1
se−s

2/2︸ ︷︷ ︸
branch length info

, s =
2n−1∑
i=1

ti .

I f (·) is exchangeable with respect to the branch lengths.
I Removal of a leaf from τ(n) results in a tree a with density

f (τ(n − 1)).

I s = Sum of branch lengths characterizes f , and captures overall
distance between pixel clusters (and is Gamma distributed).



A simple distribution on binary trees

With n inter-event times, a binary tree τ(n) with n leaves or terminal
nodes, 2n vertices and 2n − 1 edges is constructed.

Proposition
From the properties of the Poisson process with rate t, τ(n) can be given
the density

f (τ(n)) =

[
n−1∏
i=1

1
2i − 1

]−1

︸ ︷︷ ︸
topological info

1
2

n−1
se−s

2/2︸ ︷︷ ︸
branch length info

, s =
2n−1∑
i=1

ti .

I f (·) is exchangeable with respect to the branch lengths.
I Removal of a leaf from τ(n) results in a tree a with density

f (τ(n − 1)).
I s = Sum of branch lengths characterizes f , and captures overall

distance between pixel clusters (and is Gamma distributed).



Aldous’1 Continuum Random Tree (CRT)

As n→∞,

root	
  

t1

t2

t3

(http://www.normalesup.org/ kortchem/english.html)

I CRT is invariant (to offspring distribution) limit of trees from
(conditioned) Galton–Watson branching process.

I Binary trees from Poisson model ‘finite-dimensional subtrees’ of
CRT. This allows generalisations to non-binary trees.

1D. Aldous. The Continuum Random Tree III. (1993). 21, 248-289



Invariant GoF test for binary trees: two-sample

Suppose τ (n) = (τ(n1), . . . , τ(np)) and η(m) = (η(m1), . . . , η(mq)) are
independent samples of binary trees from πτ and πη respectively.

Theorem
Let rj denote the sum of the branch lengths of η(mj), and without loss of
generality assume that

∑p
i=1 si >

∑q
j=1 rj . Then, the critical function

ψ(n,m, α) =

{
1 if

∑p
i=1 si∑q
j=1 rj

>
(∑p

i=1 ni∑q
j=1 mj

)
F1−α,2

∑p
i=1 ni ,2

∑q
j=1 mj

;

0 otherwise,

where Fα,a,b is the αth percentile of an F distribution with a and b
degrees of freedom, for testing H0 : πτ = πη = f , is such that
EH0ψ(n,m, α) = α. The test is invariant to the permutation of the
leaves.



Two-sample test to detect heterogeneity

I From binary trees obtained from hierarchical clustering, we chose
binary subtrees by randomly selecting a subset of leaves and
constructing their Least Common Ancestor trees (see paper for
details).

I Using the survival times, we created two groups of patients: those
with survival times ≤ 12 months and those >12 months.

I Differences in groups was detected by LCA-based test at 1%
significance level.

I Naive Bayes classifier with the likelihood from LCA trees, provided
69% classification accuracy.
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PROBABILITY DENSITIES FROM TUMOUR
IMAGES

*S. Kurtek and K. Bharath. Bayesian Sensitivity Analysis with Fisher–Rao metric. Biometrika. (2015), 102, 616.

*K. Bharath et al. DEMARCATE: Density-based Magnetic Resonance Image Clustering for Assessing Tumor
Heterogeneity in Cancer. NeuroImage. (2016). 12, 132-143.

*A. Saha, K. Bharath and S. Kurtek. A Geometric Variational Approach to Bayesian Inference. Minor Revision
with Journal of the America Statistical Association.



Voxel density representation

I Captures intra-tumour heterogeneity.
I Commonly used with numerical summaries.



Hilbert space geometry of the space of PDFs

I Parametric families of densities is not appropriate.

I However, the nonparametric family
P =

{
f : R→ R+ ∪ {0} :

∫
R f (x)dx = 1

}
, is a (non-linear) Banach

manifold.

I The nonparametric Fisher-Rao metric is:

〈〈δf1, δf2〉〉f =

∫
R
δf1(x)δf2(x)

1
f (x)

dx .

I The metric is invariant to one-to-one transformations, but distance
is difficult to compute.

I Under the mapping f 7→ +
√
f , we move to the positive orthant of

the unit L2 sphere , and Fisher–Rao metric transforms to the usual
L2 metric.
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Hilbert space geometry of the space of PDFs



Distance-based clustering of images with PDFs
I Equipped with a computable distance dFR on P, the (sample)

Frechét mean f̂mean can be defined as

argminµ∈P
n∑

i=1

d2
FR(fi , µ).

I k-means clustering with k = 2 can be carried out.
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Distance-based clustering of images with PDFs

Top: 3 images from Cluster 1; Bottom: 3 images from Cluster 2.



Visualising clustering results through PCA

At the tangent space of f̂mean, the sample covariance operator can be
estimated, enabling PCA.

Details and further results in the papers.



Shapes from tumour images

*K. Bharath et al. Radiologic Image-based Statistical Shape Analysis of Brain Tumors. Journal of the Royal
Statistical Society–Series C. (2018+).

*K. Bharath and S. Kurtek. Distribution and Sampling of Warps Maps for Curve Alignment. Minor Revision with
Journal of the America Statistical Association.



Representation of tumour shapes

I Absolutely continuous parameterised closed curve: C : S1 → R2.

I The notion of a shape of such a curve requires invariances to
transformations that represent nuisance information, such as
translations, rotations and reparameterisations of C .
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Representation of tumour shapes

I Γ := {γ : S → S is an orientation-preserving diffeomorphism}

I SO(2) is the rotation group in R3

The shape of a parameterized curve C is defined to be the equivalence
class

[C ] :=
{
σOC (γ(t)) + a, γ ∈ Γ,O ∈ SO(2), a ∈ R2, σ > 0

}
.

The set of shapes is the quotient space under the actions of relevant
transformation groups, and is an infinite-dimensional non-linear manifold.



Riemannian geometric framework

The Square-Root Transform (SRT)2: Consider the bijective (mod
translations) transform

C 7→ QC :=
C ′

‖C ′‖
.

I Removes scale and translation variation;

I Allows the definition of a valid, computable Riemannian distance
between tumours which is invariant to rotations, translations,
scalings and reparameterisations:

d(C1,C2) := inf
(γ,O)∈Γ×SO(2)

‖QC1 − OQC2(γ)
√
γ′‖.

2A. Srivastava and E Klassen. Functional and Shape Data Analysis. (2016). Springer, NY.
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Visualising shape deformations



PCA on tumour shape space
I The distance allows us to compute sample Frechét mean and

perform PCA on the set of tumour shapes.

I Following the deformation vector field along the geodesic in the
direction of decreased survival gives:
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Cox survival model with tumor shape predictors (PC
regression)

Model C-index
Clinical predictors only 0.652

Clinical + Genetic predictors 0.722
Clinical+Genetic+Shape PCs 0.859
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Sundries

All papers are available on arXiv.

Email: Karthik.Bharath@nottingham.ac.uk

I C++ code for trees available on Github page pkambadu/DyckPath.

I For shapes and PDFs:
I R package fdasrvf, maintained by Derek Tucker

(jdtuck@sandia.gov).

I Matlab stand-alone programs available on Sebastian Kurtek’s
(kurtek.1@stat.osu.edu) website at OSU.


