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Shape and invariances

“Configuration”

m >< k Xl X2 o« o e Xk
V =1 v y2 -
Zl Z2 o« o e Zk

@ “Shape”: info invariant to translation, scaling, rotation (+ reflection)
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Shape and invariances

“Configuration”

ka Xl X2 o« o e Xk
- V= yvi y2 - w
Zl Z2 o« o e Zk

(Assume V is centred: V1 = 0)

@ “Shape”: info invariant to translation, scaling, rotation (4 reflection)
o Can identify shape as [V] = {cQV : c e R";Q € O(m)}
@ “Shape function”: g(-) such that g(V) = g(cQV).
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Rise of Word Embedding Models

TITLE CITED BY YEAR

Distributed representations of words and phrases and their compositionality 16538 2013
T Mikolov, | Sutskever, K Chen, GS Corrado, J Dean
Neural information processing systems

Efficient estil of word ref i in vector space 13414 2013
T Mikolov, K Chen, G Corrado, J Dean

arXiv preprint arXiv:1301.3781

Glove: Global vectors for word representation 10790 2014

J Pennington, R Socher, C Manning
Proceedings of the 2014 conference on empirical methods in natural language
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Why word embeddings?

@ Word embedding V encodes word meaning.
@ Used for, and evaluated on, word tasks.
@ Word similarity: “given word A, how similar is word B?"

@ Word association: “Ais to B as C is to what?", e.g. Paris is to
France as Madrid isto ...7

Task performance measured by g(data, V).
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Word embeddings as matrix factorisation

Simple word embedding model: take V as minimiser of

2
IX=UvIE =" (x;—u]v)

i
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Solution for V: write SVD of X = AXB'. Then || X — Xy4|| is minimised
by X4 = AdZdB;, so take

U =Ay, V'=X,B].
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Word embeddings as matrix factorisation

Simple word embedding model: take V as minimiser of

X -uv|P=%" (xj - u,ij)2 — (X, UV)

i

Solution for V: write SVD of X = AXB'. Then || X — Xy4|| is minimised
by X4 = AdZdB;, so take

U =Ay, V'=X,B].
LorVE=XLB] 7
...or V* = CB] for any C € GL(d) ?!

Non-identifiability: f(X,UV) = f(X,UC~1CV)
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Non-identifiability of different embedding models

LSA: Z (xj — u,ij)2

i

word2vec: Y log (o (u/vj)) + Z’Xizxxmj log (o (—u/v;)))
iy

ij

GloVe: Z h(xj) (uf v — m (Xij))2

i

Simon Preston (University of Nottingham)

7/15



Non-identifiability of different embedding models

LSA: D (x; — u,ij)2

i

word2vec: Y log (o (u/vj)) + Z’Xizxxmj log (o (—u/v;)))
iy

ij

GloVe: Z h(xj) (uf v — m (Xij))2

7
Each is such that for any particular solution
V* = argmin f(X,UV)
v
a general solution set is
{V:V=CV* CeGL(r)}
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Non-identifiability - implications? (1)

Word similarity task:

data
Human Embedding
Word 1  Word 2 Score (y;) Score (z;) o

old new 1.58 cos(Veold s Vinew” )

smart intelligent 9.2 etc

hard difficult 8.77 new

happy cheerful 9.55 :

hard easy 0.95 smart

fast rapid 8.75 intelligent
cos(vi,v;) = v v;/ (Ivill - [lvjll)
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Word similarity task:
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Word 1  Word 2 Score (y;) Score (z;) o

old new 1.58 cos(Veold s Vinew” )

smart intelligent 9.2 etc

hard difficult 8.77 new

happy cheerful 9.55 :

hard easy 0.95 smart

fast rapid 8.75 intelligent
cos(vi,v;) = v v;/ (Ivill - [lvjll)

...then measure “embedding performance” by

g(data,V) = corr({y;},{z})
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Non-identifiability - implications? (2)

Word analogy task:
@ Paris is to France as Madrid is to ... 7 Given V solve

arg max [COS(Vi; V“France") - COS(Vh V“Paris” ) + COS(Vh V “Madrid” )]
i

@ The data are a set of human-chosen analogies.

@ Performance metric g(data, V) is the proportion correct.
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Non-identifiability - implications? (2)

Word analogy task:
@ Paris is to France as Madrid is to ... 7 Given V solve

arg max [COS(Vi; V“France") - COS(Vh V“Paris” ) + COS(Vh V “Madrid” )]
i

@ The data are a set of human-chosen analogies.

@ Performance metric g(data, V) is the proportion correct.

For both similarity and analogy, g depends on V only via cos(v;, v;).

Hence g(data, V) = g(data, cQV) = g is a shape function.
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Mis-match of invariances

Training objective f(X, UV) invariant to V — CV.
Test objective g(data, V) invariant to V — cQV

f(X,UV)=f(X,UCCV), C € GL(r)
g(D,V)=g(D,cQV), Qc0(d),ceR

What is the set Fy C GL(d) which leaves f invariant but not g?
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Mis-match of invariances

Training objective f(X, UV) invariant to V — CV.
Test objective g(data, V) invariant to V — cQV

f(X,UV)=f(X,UCCV), C € GL(r)
g(D,V)=g(D,cQV), Qc0(d),ceR

What is the set Fy C GL(d) which leaves f invariant but not g?

Write Fyg = Fg — cZ, where
o Fy = GL(d)\O(d), and can be identified with UT(d), upper tringular
matrices with +ve diag elements. (Intuition: QR decomposition of C)
o ¢Z = {cly: c € R} is set of scale transformations
e dimension of Fyis d(d —1)/2 — 1.
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Is the mis-match a problem?

@ “When all methods are allowed to tune a similar set of
hyperparameters their performance is largely comparable”?

!Levy, Goldberg, Dagan, Trans. Assoc. Comput. Ling., 2015
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Is the mis-match a problem?

@ “When all methods are allowed to tune a similar set of
hyperparameters their performance is largely comparable”?

@ Some hyperparameters index different elements of solution set f,
chosen for performance in g, e.g. V¥ = }:2*0433

e f typically optimised by Monte Carlo (different solns explained as local
optima - but also due to non-identifiabilty) then soln chosen for g.

e Both are (implicitly) supervised approaches.

!Levy, Goldberg, Dagan, Trans. Assoc. Comput. Ling., 2015
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Resolving mis-match

argmin (X, UV)
Y

Identifying a solution unique up to orthogonal transformations:

o Impose constraint VV T = 1, then for any solution V* any other
solution CV* for C € GL(d) satisfies g(data, CV*) = g(data, V*).
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Resolving mis-match

argmin (X, UV)
Y

Identifying a solution unique up to orthogonal transformations:

o Impose constraint VV T = 1, then for any solution V* any other
solution CV* for C € GL(d) satisfies g(data, CV*) = g(data, V*).

Identifying a unique solution:

o Additionally impose: (i) UTU = I, (ii) diag(U"U) decreasing, (iii)
positive first non-zero elements of each col of U.
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Sensitivity to particular solution

V = A*V*
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Sensitivity to particular solution

V = A*V* V = RV*
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Outlook: dynamic embedding

Text data
t1

t3
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