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Shape and invariances

“Configuration”

→
m×k
V =

 x1 x2 · · · xk
y1 y2 · · · yk
z1 z2 · · · zk



(Assume V is centred: V1 = 0)

“Shape”: info invariant to translation, scaling, rotation (+ reflection)

Can identify shape as [V] = {cQV : c ∈ R+; Q ∈ O(m)}

“Shape function”: g(·) such that g(V) = g(cQV).
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Rise of Word Embedding Models

Simon Preston (University of Nottingham) 4 / 15



Rise of Word Embedding Models

Simon Preston (University of Nottingham) 4 / 15



Rise of Word Embedding Models

Simon Preston (University of Nottingham) 4 / 15



Why word embeddings?

Word embedding V encodes word meaning.

Used for, and evaluated on, word tasks.

Word similarity: “given word A, how similar is word B?”

Word association: “A is to B as C is to what?”, e.g. Paris is to
France as Madrid is to . . . ?

Task performance measured by g(data,V).
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Word embeddings as matrix factorisation

Simple word embedding model: take V as minimiser of

‖X−UV‖2 =
∑
ij

(
xij − u>i vj

)2

= f (X,UV)

Solution for V: write SVD of X = AΣB>. Then ‖X− Xd‖ is minimised
by Xd = AdΣdBT

d , so take

U∗ = Ad , V∗ = ΣdB>d .

. . . or V∗ = Σ1−α
d B>d ?

. . . or V∗ = CB>d for any C ∈ GL(d) ?!

Non-identifiability: f (X,UV) = f (X,UC−1CV)
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Non-identifiability of different embedding models

LSA:
∑
ij

(
xij − u>

i vj
)2

word2vec:
∑
ij

log
(
σ
(
uT
i vj
))

+ k ·
∑

l xil
∑

m xmj∑
ij xij

log
(
σ
(
−uT

i vj
))

GloVe:
∑
ij

h (xij)
(
uT
i vj − h1 (xij)

)2

Each is such that for any particular solution

V∗ = arg min
V

f (X,UV)

a general solution set is

{V : V = CV∗,C ∈ GL(r)}
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Non-identifiability - implications? (1)

Word similarity task:

data︷ ︸︸ ︷
Human Embedding

Word 1 Word 2 Score (yi) Score (zi)
old new 1.58 cos(v“old”, v“new”)

smart intelligent 9.2 etc
hard difficult 8.77 ...

happy cheerful 9.55 ...
hard easy 0.95 ...
fast rapid 8.75 ...

cos(vi , vj) = v>i vj/ (‖vi‖ · ‖vj‖)

. . . then measure “embedding performance” by

g(data,V) = corr({yi}, {zi})
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Non-identifiability - implications? (2)

Word analogy task:

Paris is to France as Madrid is to . . . ? Given V solve

arg max
i

[cos(vi , v“France”)− cos(vi , v“Paris”) + cos(vi , v“Madrid”)]

The data are a set of human-chosen analogies.

Performance metric g(data,V) is the proportion correct.

For both similarity and analogy, g depends on V only via cos(vi , vj).

Hence g(data,V) = g(data, cQV) ⇒ g is a shape function.
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Mis-match of invariances

Training objective f (X,UV) invariant to V 7→ CV.

Test objective g(data,V) invariant to V 7→ cQV

f (X ,UV ) = f
(
X ,UC−1CV

)
, C ∈ GL(r)

g (D,V ) = g (D, cQV ) , Q ∈ O(d), c ∈ R

What is the set Fd ⊂ GL(d) which leaves f invariant but not g?

Write Fd = F̃d − cI, where

F̃d = GL(d)\O(d), and can be identified with UT(d), upper tringular
matrices with +ve diag elements. (Intuition: QR decomposition of C)

cI = {cId : c ∈ R} is set of scale transformations

dimension of Fd is d(d − 1)/2− 1.
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Is the mis-match a problem?

“When all methods are allowed to tune a similar set of
hyperparameters their performance is largely comparable”1

Some hyperparameters index different elements of solution set f ,
chosen for performance in g , e.g. V∗ = Σ1−α

d B>d

f typically optimised by Monte Carlo (different solns explained as local
optima - but also due to non-identifiabilty) then soln chosen for g .

Both are (implicitly) supervised approaches.

1Levy, Goldberg, Dagan, Trans. Assoc. Comput. Ling., 2015
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Resolving mis-match

arg min
V

f (X,UV)

Identifying a solution unique up to orthogonal transformations:

Impose constraint VV> = I, then for any solution V∗ any other
solution CV∗ for C ∈ GL(d) satisfies g(data,CV∗) = g(data,V∗).

Identifying a unique solution:

Additionally impose: (i) U>U = I, (ii) diag(U>U) decreasing, (iii)
positive first non-zero elements of each col of U.
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Sensitivity to particular solution
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Outlook: dynamic embedding
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